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ABSTRACT

COTTIER, F. Light-atom interaction: mean-field approach and intensity
fluctuations. 2018. 147p. Thesis (Doctor in Science) - Instituto de Física de São Carlos,
Universidade de São Paulo, São Carlos, 2018.

In this thesis, we investigate the coherent scattering of light propagating in a random
medium. We are interested in phenomena like the super- and subradiance and Anderson
localization that are related to waves interferences and spatial disorder. However, the
fundamental difference between subradiance and Anderson localization still needs to be
clarified. This thesis gives new elements for the understanding of these phenomena and
we present a new method to observe Anderson localization. A mean-field model that
does not contain disorder is developed, and we show that super- and subradiance do not
require disorder whereas Anderson localization does. In this theoretical work, the coupling
between the light and many atoms is reduced to a coupling matrix between the atoms by
tracing over the degrees of freedom of the light, which results in a linear problem for the
atomic dipoles. The study of the eigenvalues and eigenmodes of this matrix then allows to
determine the super- and subradiant modes, and to probe the Anderson localization phase
transition with a scaling analysis. Furthermore, the link to the experiment is realized by
showing that the intensity fluctuations present an increase at the localization transition.
The system is studied in the steady-state regime when the medium is continuously charged
by a laser until reaches a stationary regime, and the decay dynamics, when the laser is
switched off, so the cloud releases the energy stored. Finally, we present a preliminary
work that shows that the diagonal disorder might be a good strategy to reach Anderson
localization.

Keywords: Cold atoms. Cooperative effects. Super- and subradiance. Anderson localiza-
tion.





RESUMO

COTTIER, F. Interação luz-átomo: abordagem de campo médio e flutuações
de intensidade. 2018. 147p. (Doutorado em Ciências) - Instituto de Física de São
Carlos, Universidade de São Paulo, São Carlos, 2018.

Nesta tese, investigamos o espalhamento coerente de luz propagando em um meio aleatório.
Estamos interessados em fenômenos como superradiância, subradiância e localização de
Anderson, os quais estão relacionados com interferências de ondas e desordem espacial.
No entanto, as diferenças fundamentais entre subradiância e localização de Anderson
ainda precisam ser esclarecidas. Esta tese traz novos elementos na compreensão destes
fenômenos e apresentamos um novo método para observar a localização de Anderson. Neste
trabalho teórico, estudamos os autovalores e os automodos de uma matriz de acoplamento
que permite extrair modos super- e subradiantes, e exibem uma transição de fase de
localização de Anderson através de uma análise de escalamento. Além disso, a conexão com
o experimento é feita através da intensidade irradiada pela nuvem em todas as direções.
Distinguimos dois casos: o regime de estado estacionário, quando o meio é continuamente
excitado por um laser e alcança um regime estacionário; e o caso dinâmico, onde o laser é
desligado e a nuvem libera a energia armazenada. Desenvolvemos um modelo de campo
médio que não inclui desordem, e mostramos que super- e subradiância não precisam da
desordem para existir, ao contrário da localização de Anderson. Mostramos também que
podemos observar uma transição de fase de localização de Anderson na estatística da
intensidade. Finalmente, apresentamos um trabalho preliminar que mostra que a desordem
diagonal pode ser uma boa estratégia para alcançar a localização de Anderson.

Palavras-chaves: Átomos frios. Efeitos cooperativos. Super- e subradiância. Localização
de Anderson.





RÉSUMÉ

COTTIER, F. Interaction lumière-atomes : approche du champ moyen et
fluctuations d’intensité. 2018. 147p. (Docteur en Sciences) - Instituto de Física de São
Carlos, Universidade de São Paulo, São Carlos, 2018.

Dans cette thèse, nous étudions la diffusion cohérente de la lumière se propageant dans un
milieu désordonné. Nous nous intéressons à des phénomènes tels que la super- et sousra-
diance et la localisation d’Anderson qui sont liées aux interférences et au désordre spatial.
Cependant, la différence fondamentale entre la sousradiance et la localisation d’Anderson
doit encore être clarifiée. Cette thèse donne de nouvelles idées pour la compréhension de
ces phénomènes et nous présentons une nouvelle méthode pour observer la localisation
d’Anderson. On développe un modèle à champ moyen qui ne contient pas de désordre, et
nous montrons que super- et sousradiance ne nécessitent pas de désordre contrairement à
la localisation d’Anderson. Dans ce travail théorique, le couplage entre la lumière et les
atomes est réduit à une matrice de couplage entre les atomes en calculant la trace sur les
degrés de liberté de la lumière, ce qui nous amène à un problème linéaire pour les dipôles
atomiques. L’étude des valeurs propres et des modes propres de cette matrice permet
de déterminer des modes super- et sousradiant, et de sonder la transition de phase de
localisation avec une scaling analysis. De plus, le lien avec l’expérience est fait en montrant
que les fluctuations de l’intensité augmentent à travers la transition de localisation. Le
système est étudié en régime stationnaire, quand le milieu est continûment chargé par un
laser et que celui-ci atteint l’équilibre, et en dynamique, quand le laser est éteint et que le
milieu se décharge de l’énergie stockée. Enfin, nous présentons un travail préliminaire qui
montre que le désordre diagonal peut être une bonne stratégie pour atteindre la localisation
d’Anderson.

Keywords : Atomes froids. Effets coopératifs. Super- et sousradiance. Localisation
d’Anderson.
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b0 Resonant optical thickness.

βj(t) Atomic dipole function of atom j.
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G Green function.

h Spatial grid step.
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jn(r) First kind of Bessel function.
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P (I) PDF of variable I.
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The light-matter interaction and the propagation of light in a disordered medium
is an active topic of research but also manifests in everyday life. Technical progresses such
as the invention of the laser1,2 and theoretical advances on the wave behaviour of the
light and the understanding of interferences allowed for a broad series of comparisons
between theories and experiments.3–6 Hence, a fundamental experiment that matches
theoretical predictions validates the theory whereas a contradiction leads to more details
theoretical work. So, the light-matter interaction is challenging experimentally as well as a
theoretically. Indeed, depending on the characteristics of the wave (coherent or incoherent
for instance) and the medium (density, disordered or ordered, linear or not, size of the
scatterers . . . ), it gives rise to different physics. For instance, at a macroscopic level, a
perfectly transparent and amorphous medium refract the light, and the medium can be
described with a refractive index. The light propagates in straight line in the two mediums
but the direction of propagation is modified at the interface with an angle depending on the
refractive index. We can observe this effect when a pen is in the water or a monochromatic
light going through a prism. Thus, the atomic details can be forgotten when studying such
a phenomenon.

Yet in some cases, the disorder will play a predominant role. One way to describe
the scattering of a particle in a random medium is to imagine a random walk. Hence, the
number of scattering of a particle depends on the cross-section of the scatterers.4 This
simple approach already allows explaining many phenomena. For instance, the radiation
trapping describes the trapping of a photon in the medium by an increase in the number of
scattering while the optical thickness of the medium increases.7,8 However, when the wave
behaviour of the particle is involved, (i.e. wave-particle description of a photon), a more
complete approach taking into account interferences is required. Indeed, in this thesis we
are interested in interference phenomena that occur in the scattering of a coherent light in
a disordered medium, for example, the light propagating in a glass of milk. The interest
of cold atoms as a disordered medium is that we can work at resonance, i.e., with an
optically thick medium where we are in the multiple scattering regime. Hence, cooperative
effects are introduced between dipoles through the scattering of electromagnetic waves.
Atoms behave collectively even though they are spatially separated. In the simple picture
of a single atom, an electromagnetic wave propagating toward the atom can be re-emitted
in another direction, from its original direction where the atom plays the role of the
scatterer; it corresponds to a scattering event. In most of this thesis, we consider a scalar
description of the light which means that the scattering by the atoms is isotropic, although
the global emission diagram of the atomic cloud contains different physics depending on
the direction of observation. Moreover, the scattering is elastic if there is no exchange
of energy between the wave and the scatterer. Throughout this thesis, we consider a
low-intensity pump in order to stay in the linear optical regime, so the scattering by
the atoms is elastic, i.e., the wavelength of the light is unaltered during the scattering
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process. For instance, the Rayleigh scattering is elastic and the wavelength is preserved.
In addition, in this thesis, we stay in the regime where the size of the scatterers is much
smaller than the incident wavelength, yet the size of the atomic cloud is much larger. Thus,
if the microscopic disorder is neglected, the Mie theory9 can apply. In this thesis, we are
interested in phenomena directly linked to the spatial disorder like Anderson localization.
Thus, we use a coupled-dipole model to describe the light-atom interaction as it considers
the spatial position of all atoms.

The scattering of the light propagating in a cloud of two-level atoms contains
a rich physics and initiated intense interactions between theory and experiment. Two
theoretical results, the Dicke subradiance10 and the Anderson localization,11 lead to many
experiments that searched for their experimental signatures. In order to explain those
phenomena, it is important to consider the wave behaviour of the light, the coherence
of the light and interferences. On the contrary, the radiative transfer equation (RTE),4

that does not deal with phases, is a good model to describe the Beer-Lambert law,12 the
incoherent transmission and the radiation trapping but cannot explain localization and
super- and subradiance. The RTE takes into account the direction of propagation of the
intensity which is more general than a classic diffusion equation that considers the density
distribution of the intensity. For those two last phenomena (the Dicke subradiance and the
Anderson localization), it is essential to use a more complete theory like the coupled-dipole
model that will be presented in Part.II and results from the direct derivation of Maxwell’s
equations.

If one considers a single excited atom, it will radiate its energy with a characteristic
time of 1/Γ where Γ is the characteristic decay time. When one considers an ensemble of
N atoms in a small volume, an accelerated decay rate appears that can be N2 faster than
for a single atom. Originally, superradiance was investigated for a system of N excited
atoms in a system of characteristic size L� λ and where interactions are neglected, yet
assuming the system remains in a series of symmetric states.10 It has been shown that in
this case, the maximal decay rate of the system is N2 times faster than for N independent
atoms.10,13–15 In this thesis, we explore a slightly different system. We consider only the
last stage of the radiative decay i.e. when the system contains at most one photon (we
consider it is weakly driven). Still in the L� λ regime, the spontaneous decay is ΓN = NΓ,
if polarization effects are neglected.13 However, we will focus on dilute clouds, with L� λ,
for which the superradiant decay rate is16,17:

ΓN ∼
N

(k0L)2 Γ. (1)

We remark that it is the decay rate for the case L� λ with (k0L)2 the number of accessible
modes in a system of size L so, there are typically N/(k0L)2 atoms per mode. We also
notice that N/(k0L)2 is the resonant optical thickness of the cloud, b0. This parameter
helps to quantify of the cooperative effects inside the cloud. It is computed by integrating



GENERAL INTRODUCTION 33

the atomic density in the direction of the laser’s propagation inside the cloud times the
resonant scattering cross section. The superradiance is interpreted as the synchronization
of dipoles that radiate coherently, in opposition to the subradiance where dipoles have
less homogeneous phase profile. Hence, an ensemble of N atoms can couple through the
electromagnetic field which gives rise to cooperative effects.

Cooperative effects in an atomic cloud are responsible for the increase of the
radiative decay rate. It is thus natural to study an opposite consequence that is the
trapping of the light inside the medium. There are three kinds of trapping: radiation
trapping (random walk), subradiance and Anderson localization (interferences). The
radiation trapping is the most intuitive phenomena as it describes the increase of the
number of scattering events inside the medium with the increase of the optical thickness
of the cloud. The radiation transfer equation (RTE) does not include interferences, is a
suitable model to explain it. The first of the two phenomena we are interested in this thesis
is the subradiance, which can be explained by interferences like superradiance. The study of
subradiance is more recent than the one of superradiance due to the experimental challenge
it represents, detecting the late-time cloud decay and coupling to subradiant modes.
However, the first measurement of subradiance for dilute clouds was recently achieved in
Nice.18 Moreover, in the search of Anderson localization the interest for subradiance is
renewed as both phenomena have been associated. Indeed, the long lifetime decay of the
energy charged into a cloud of atoms was thought to be a signature of localization of the
light.19 In Part.III, we show that they are not straightforwardly connected.

Another rich topic of research is the Anderson localization introduced in 1958
by P.W. Anderson.11 It originally came with the study of the trapping of electrons in
disordered potentials and it was later shown to be more generally a wave phenomenon.
Hence, the localization of light became of interest and cold atoms are an interesting
medium to experimentally look for it since there are no interactions between photons or
the absorption is negligeable. In electronic transport, the transition between a conductor to
an insulator is reached by increasing the strength of the disorder. In the case of localization
of light by cold atoms, the incident wave is a low-intensity laser and the disordered medium
is an atomic cloud with tunable density. The disorder has been historically associated with
the density, so we expect that the transition between the two regimes appears at a given
density threshold. This approach is used in Part.III and Part.IV. However, the original
idea of P.W. Anderson11 is to control the disorder with the strength of a random potential
for each site of a lattice where electrons are initially located. If we apply this approach to
our system, it refers to "diagonal" disorder. The disorder is not related to the positional
distribution of the atoms any longer but to the randomness in the shift of resonant energy
of each atom. This method for introducing and controlling the disorder is presented and
investigated Part.V.



34 GENERAL INTRODUCTION

In this thesis, we consider the propagation of a laser in a cloud of two-level atoms
and the scattering by every atom is elastic and isotropic. For one atom, the cross-section
gives the probability of a wave to be scattered. For an ensemble of atoms, the density plays
a role and the relevant parameter is the mean free path that is the inverse of the density
times the cross-section and it gives the characteristic distance between two scattering
events.

In Part.II of this thesis we address the question of the role of the disorder for
super- and subradiance. We present a mean-field model that does not contain disorder
and we compare it with the well-known coupled-dipole model that does. First, we present
the two models. Then we perform a spectra analysis and we show the existence of super-
and subradiant modes in the two models. Finally, we bring our attention to the radiated
intensity and the super- and subradiant rates.

In Part.III, we investigate the difference between subradiance and localization
through the prism of the disorder by performing a scaling analysis with the mean-field
model. We show that the mean-field model does not exhibit Anderson localization (AL)
phase transition even if it describes subradiance.

Part.IV and Part.V are dedicated to the search of Anderson localization of light in
3D. The Part.IV is about the density as a way to introduce disorder whereas the Part.V is
dedicated to the diagonal disorder. In both of those parts, we investigate the AL phase
transition with a detailed study of the statistics of the radiated intensity.

In Part.IV, we first look at the transmitted mean intensity both in the steady-state
and dynamically to show that there is no clear evidence of localization in those observables.
Then we look at the probability distribution function of the fluctuations of the radiated
intensity in the localized and non-localized regime, to show that it can be used as a
signature of the localization transition. We turn our attention on the variance of the
normalized intensity and the conductance. Finally, we consider the vectorial behaviour of
the light and we introduce a strong magnetic field.

Finally, Part.V is dedicated to the introduction of a diagonal disorder as a way to
reach the localized regime as it was recently proposed.20 We apply the same approach as
in Part.IV. First, we look at how the spectrum is modified by the diagonal disorder. Then
we investigate the transmission and the intensity fluctuations in the stationary regime.
Finally, we study the fluctuations of the intensity in time.
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1 MODELING THE LIGHT-ATOM INTERACTION

The interaction between light and a disordered medium can be seen from two sides.
Either we take the point of view of the wave which is scattered by the scatterers or we
consider that the scatterers are coupled between each other through the light. The first
approach leads to studying the wave equation in random media, as presented, for example,
in chapter 2 of reference.21 It is a quite complex study and few analytical solutions exist
such as the Mie-scattering theory.22,23 An important simplification is to use a mean-field
approach that averages the field over the disorder as usually done for dielectrics. The
interest of this approach is that the medium is described as a continuum, and in the
homogeneous case analytical solutions can often be derived. We will develop such approach
in Sec.1.2, in the context of subradiance. Another way to deal with the problem leads to
scatterers coupled by light and so we have coupled equations for all the scatterers. It is
the coupled-dipole model presented Sec.1.1. It focuses on the scatterers and it contains all
the physics involved in the system like disorder, dipole-dipole interaction and it allows to
compute diffusion and refraction that are wave phenomena. However, the numerical time
resolution limits the number of coupled scatterers that can be considered (∼ 10 000). The
main interest in comparing those two models is that one contains disorder when the other
one does not. Hence, this study will help us to understand the influence of the disorder
in phenomenon like super- and subradiance and Anderson localization. Moreover, in this
chapter (and in the full thesis) we use a scalar description of the light so polarization and
long-range effects are not considered. Nevertheless, in the dilute regimes, when k0r � 1 (r
is the distance between two scatterers), the electric field is dominated by its transverse
contribution that scales with 1/r so the radiative contribution can be neglected as well as
long-range interactions. In our work, we impose to stay in a regime where k0r � 1 even
when we consider dense regimes.

In the first part of this thesis we investigate both models (coupled-dipole and
mean-field models) in order to look for which phenomena are described by only one or
both model with the prism of the disorder.

1.1 Microscopic model: Coupled-dipole model

The coupled-dipole model (CDM) was proposed several decades ago24 and has been
intensively used over the past ten years to study the interaction between light and atomic
dipoles.25,26 There has been a renewed interest in this model over the last years due to
the increase in computational power available. With existing computation power, it can
be reasonably used for up to 10 000 dipoles. Other models like the Radiation Trapping
Equation (RTE) can be used to describe for example the radiation trapping, the coherent
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and incoherent transmission or the reflection27 because those are not due to interference
effects. However, it cannot explain coherent backscattering (CBS)6,28 which justifies the
development of more complete tools. The CDM gives a microscopic description of the
medium and highlights the cooperation of the dipoles as they interact through the vacuum
modes as well as the disorder represented by the random position of the atoms and all
interferences effects.

1.1.1 Single and two-level atom physics

The structure of a single two-level atom is presented in Fig.1. The atom transition

Scattering 

cross section

Figure 1 – Energy scheme of a two-level atom

Source: By the author

frequency is ωa of wavelength λa, its linewidth is Γ which corresponds to the decay rate
of the atom from the excited state and expresses the characteristic time for spontaneous
emission. The scattering cross section follows a Lorentzian σsc = σ0/(1 + 4δ2) and gives
the probability for the atom to be excited by an incident photon of frequency ω0 = ωa + ∆,
σ0 = λ2/2π is the scattering cross section on resonance for scalar light and the photon
detuning from the atomic transition is ∆ = δΓ = ω0 − ωa.

Let us now consider two identical atoms 1 and 2 with distance r12. Solving (1.2),
see Sec.1.1.3, it is easy to show that the associated eigenvalues are:

λ1,2 = (1− 2ıδ)± eık0r12

ık0r12
. (1.1)

As we will show later, the real part of λ1,2 is associated with the decay rate of the
excited atom. The two-atom system is represented in Fig.2. From (1.1), two limit cases
can be identified: first, if the atoms are far away from each other, k0rij � 1, they will
behave as independent atoms with the same behaviour as in the previous paragraph as
λ1,2

k0r1,2→∞−−−−−−→ 1− 2ıδ. Then, if k0rij < 2π each atom cannot be seen as isolated and they
have to be described by one unique system of two modes. The strong correlations that
develop between pairs of atoms closer than a wavelength will hereafter be referred as pair
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Scattering 
cross section

Figure 2 – Scheme for two identical atoms coupled by the dipole-dipole radiation

Source: By the author

physics, oppositely to the long-range effects that prevail for many atoms in a dilute cloud,
which is the focus of this thesis. Eigenvalues are therefore λ1,2 ∼ 1/r when k0r1,2 → 0. We
can thus introduce the idea of super- and subradiance: <(Γ1) = 2 > Γ means that mode
one will decay faster than one isolated atom, inversely to mode two (<(Γ2) = 0 < Γ).
They are respectively called superradiant and subradiant modes. It has been shown that
superradiant mode results in an attractive potential between those pairs.29,30 We now
extend this interpretation for N fixed two-level atoms (dipoles). However, at large density,
the probability to have two atoms satisfying k0rij < 2π becomes non-negligible and
pairs appear. It has been largely studied through the Euclidian non-hermitian random
matrix theories31–33 and their set of eigenvalues distribution in L. Bellando’s thesis25 and
reference.34 For most of the results presented in this thesis we discuss the impact of those
pairs by introducing an exclusion volume.35–38 Indeed, they contain interesting physics but
they may hinder long-range effects as they introduce long-lived modes that are related to
neither the many-scatterer subradiance nor the scattering of light.

1.1.2 Coupled-dipole equations

We study the interaction between a laser and a cloud of two-level cold atoms. This
cloud is modeled as N � 1 point scatterers at fixed position rj , randomly distributed with
an average density ρ(r), transition linewidth Γ (also called single atom decay rate) and
transition frequency ωa. The pumping laser consists in a monochromatic plane wave E0e

ık.r

of wavevector k = kẑ (k = ω0/c), detuned from the atomic transition by ∆ = ω0−ωa (the
normalized detuning is δ = ∆/Γ) and Rabi-frequency is Ω� Γ.

We now introduce parameters that are relevant to describe the scattering regime.
First, the scattering cross section is given by σsc = σ0/(1 + 4δ2) where σ0 = λ2/π is the
on-resonance cross section for scalar light. It can be seen as the size of the atom and it gives
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the probability for the atom to be excited by a photon of frequency ωa. Then, the mean
free path is the characteristic distance between two scattering events lsc = 1/(ρσsc). The
resonant optical thickness, b0, is a cooperative effect parameter.18,35,39 Whereas, the optical
thickness b(δ) quantifies the multiple scattering. It is defined as b(δ) = b0/(1 + 4δ2) where
b0 =

∫
ρ(0, 0, z)σ0 dz is the on-resonance optical thickness. For instance, b0 = 6N/(k0R)2

for a uniform sphere of radius R and with scalar light. b0 depends on the geometry of the
cloud and the interaction with the laser is done by the factor 1/(1 + 4δ2). These two last
parameters are used to classify two regimes: the single scattering regime where photons
cross the medium without interacting with the atoms (or at most once) so the medium
is transparent and the multiple scattering regime where photons will scatter many times
before escaping the medium. The first one takes place when b(δ)� 1 which is equivalent
to lsc > R and can be reached for a large detuning. In the other regime, b(δ)� 1 which is
equivalent to lsc � R. It is important to remark that the single scattering regime, where
the medium seems transparent in regards to the incoming photons, is not equivalent to N
independent atoms as interference effects like super- and subradiance remain.18,35,40 This
remark is crucial to explain the difference between radiation trapping and subradiance.
This will be discussed throughout this part.
Notions like the mean free path or the single and multiple scattering make sense for a
random walk description of the propagation of a photon through a disordered medium.
Indeed, the photon can be described by consecutive scattering events. However, to discuss
phenomena like superradiance or subradiance, this image is not appropriate as the system
is described by modes.

We stay in the low-intensity regime to avoid atoms saturation, which experimentally
corresponds to the saturation parameter s(∆) = I0/Isat

1+4δ2 � 1 (I0 is the laser intensity and
Isat is the saturation intensity). Using the Markov approximation, the resonant dynamics
of the atomic dipoles is given by a set of N coupled equations24,41 for the atomic dipoles
βj:

dβj
dt

=
(
ı∆− Γ

2

)
βj −

ıΩ
2 e

ık.rj − Γ
2
∑
m 6=j

exp(ık|rj − rm|)
ık|rj − rm|

βm. (1.2)

The first right-hand term describes the single atom dynamics, with both spontaneous
emission and oscillations due to the detuning, the second term corresponds to the laser
and the last one to the radiation from all other atoms.
From the atomic dipole βi(t) we can extract the probability of atom i to be excited at
time t by computing |βi(t)|2.

The derivation of (1.2) are presented and extensively discussed in26,42 from Maxwell
equations and from a quantum approach.
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1.1.3 Solution of the CD equations

One way to solve (1.2) consists in finding eigenfunctions ψn and their related eigen-
values−Γ

2λn of a matrix−Γ
2D describing the dynamics of the system. The diagonal elements

are Di,j = (1− 2ı∆/Γ) and off-diagonal ones are Di 6=j = exp (ık|ri − rj|) / (ık|ri − rj|).
Matrix D describes the dynamics of the system driven by (1.2). The last term of (1.2)
which contains the off-diagonal terms Di 6=j gives rise to cooperative effects through the
eigenmodes of the system. Eigenmode n (ψn), of matrix D has its pth component denoted
ψpn, which thus is the contribution of atom p to mode n. We have changed the basis from
the atoms basis to the modes basis. An eigenmode involves, in general, all the atoms, the
contribution of each atom to mode n being given by |ψpn|2 so the modes are collective.
Those modes are expressed as ψn(t) = ψn(0) exp(−Γ

2λnt), so their a probability to be
excited decays as:

|ψn(t)|2 = |ψn(0)|2 exp(−Γγnt), (1.3)

where we have defined λn = γn + ıωn. With this definition, γn and ωn are respectively the
decay rate and the energy shift of mode n.

We can discuss the notion of super- and subradiance from (1.3). We clearly see
that if γn < 1, mode n will release his energy slower than one independent atom which is
called a subradiant mode. On the other hand, if γn > 1, mode n will be called superradiant.

1.2 Continuous model: Mean-field approach

From a macroscopic point of view, where atomic details are neglected, a mean-field
approach can be used to describe the propagation of light in a disordered medium. A
mean-field approach had been introduced to simplify the description of many-body systems
where all bodies interact between each other, which results in a set of N coupled equations
as presented in the coupled-dipole model Sec.1.1. The interaction of N − 1 bodies with the
N−th last one is replaced by a mean-field generated by all particles. Hence, the many-body
system is replaced by a mean-field problem where the choice of the mean-field represents
the main difficulty. The mean-field approach represents thus a continuous description of
the dipole field.
A dielectric material is globally neutral but composed of positive and negatives particles.
Differently from a conductor where charges flow through the material by applying an
electric field, in a dielectric, electrons slightly shift from their average position, which
breaks locally the charge neutrality and introduces an internal electric field that tends to
reduce the overall field. Those fields can be derived from Maxwell equations what lead to
the mean-field model that we show Sec.1.2.1.

The derivation presented in Sec.1.2.1 corresponds to a mean-field treatment of the
cloud, which is in particular at the basis of the dielectric description of matter. Indeed
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in the stationary regime, the dipole field can be shown to obey the Helmholtz equation,
so techniques such as Mie scattering can be used to describe the scattering properties of
the atomic sample.9 The study of higher-order terms (in the stationary state) leads to
corrections such as the Lorentz–Lorenz equation43 but also effects related to quantum
statistics for degenerate gases.37,44

1.2.1 Derivation of the continuous model

We model the N dipoles by N positive charges and negative charges (electron)
gravitating around as it is done for dielectrics. This derivation is based on Maxwell’s
equations and the electric field whereas reference45 focuses on dipoles. Let us start by
deriving the well-known wave equation with an electric current from Maxwell-Ampère and
Maxwell-Faraday equations:

∇× E = −∂B
∂t
, ∇×B = µ0j + µ0ε0

∂E
∂t
, (1.4)

where ε0 and µ0 are respectively the vacuum permittivity and the vacuum permeability. E
and B are the total electric respectively magnetic field. We note c2 = 1/(ε0µ0) the square
speed of light, j is the current density and ∇ the nabla operator. For a medium without
free charges (a globally neutral medium), the Maxwell-Gauss equation gives ∇.E = 0.
Using the identity ∇× (∇× E) = ∇ · (∇ · E)−∆E we find the wave equation:

∆E− 1
c2
∂2E
∂t2

= µ0
∂j
∂t
. (1.5)

For a discrete description of the medium with N fixed atoms, the electric current results
from the sum of the displacement of all the electrons :

j(t, r) = −e
N∑
i=1

dri(t)
dt

δ(r− ri), (1.6)

δ(r) is the Dirac function, ri(t) is the position of the electron gravitating around atom i.
This microscopic approach leads to the coupled-dipole equation and was discussed in the
previous section Sec.1.1. The interest of the mean-field approach is to go from a microscopic
to a macroscopic description of the medium. So, disorder is lost by replacing the sum over
the N particles in (1.6) by a density distribution function of space ρ(r) (independent of
time). The current density is thus defined as:

j(r, t) = −eρ(r)ve(r, t), (1.7)

with ve(r, t) = ∂re(r,t)
∂t

. The variable re(r, t) is the displacement of electrons at position r
from their equilibrium position. It results in the differential equation :

∂2re(r, t)
∂t2

+ ω2
are(r, t) = − e

m
E(re, t), (1.8)
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E(t, r) represents the total field, e the electric charge and m the electron mass. We suppose
that all electrons oscillate in the same direction ε̂ that is the same direction than the
electric field polarization. Moreover, we introduce the slowly-varying variables E and re
on a time scale of 1/ωa:

E(r, t) = E(r, t)e−ıωtε̂, (1.9)
re(r, t) = re(r, t)e−ıωtε̂, (1.10)

which turns (1.5) into:
∇2E + k2E = µ0eω

2ρre, (1.11)

with ω = kc.
Equation (1.11) is a classic Helmholtz equation with second term and the solution is given
in term of the Green function G as:

E(r, t) = − ıµ0eω
3

4πc

∫
ρ(r′)G(r− r′)re(r′, t) dr′, (1.12)

G(r) = exp(ık|r|)/(ık|r|) is the Green’s function.
Deriving (1.12) over time leads to:

E(r, t)
∂t

= − ıµ0eω
3

4πc

∫
ρ(r′)G(r− r′)re(r

′, t)
∂t

dr′. (1.13)

Moreover, injecting (1.9) and (1.10) in (1.8) gives a close equation and leads to:
(
ω2 − ω2

a

)
re + 2ıω∂re

∂t
= e

m
E. (1.14)

We introduce the detuning ∆ = ω − ωa between the driving field and the electronic
oscillator frequency and we assume ∆� ωa. Combining (1.12), (1.13) and (1.14) leads to
a self-consistent equation for the electric field45:

∂E(r, t)
∂t

= ı∆E(r, t)− Γ
2

∫
ρ(r′)G(r− r′)E(r′, t) dr′, (1.15)

with Γ = (µ0e
2ω2

a)/(8πmc). In this semi-classical picture, Γ corresponds to a decay rate
for the electric field and can be associated to the decay rate of an atomic transition as
introduced in Sec.1.1.

In the linear optics regime the dipole βj is directly proportional to the local electric
field Ej, (βj = dEj/~(2∆ + ıΓ)), with d the matrix dipole element of the transition, such
that Ω = dE/~. Thus, (1.15) is the continuous version of (1.2) where the laser term is
added by hand. In the other way round, (1.2) can be seen as the microscopic version of
(1.15).
A more straightforward way to come out with (1.15) from the the coupled-dipole equation
(1.2) is by replacing βj(t) −→ β(r, t) and ∑j −→

∫
ρ dr. Or, the other way around, we

can go from (1.15) to (1.2) by replacing ρ(r) −→ ∑N
j=1 δ(r− rj) and βj −→ β(r, t).
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We also notice that the single-atom decay term is included in the integral term at the limit
r → r′ when we move to the microscopic description ρ(r) = ∑N

j=1 δ(r − rj) and with a
proper definition of the Green function, see Sec.1.2.2. Nevertheless, the single atom physics
is lost in the mean-field model as we have chosen a smooth density (field approach) rather
than point scatterers.

1.2.2 Singularity

The green function is usually defined as G(r) = exp(ıkr)/(ıkr) = −ı cosh(kr) +
sinh(kr). From this expression we see that it diverges for r → 0 as the imaginary part
goes to the infinity, the real part converges to one. This singularity is related to the Lamb
shift, and it can be addressed using renormalization techniques.46 In the present work, it
is put to zero, assuming the shift is already included in the transition frequency. All in all,
the three-dimensional integral of G around the origin, for a smooth density ρ and field
E, gives a finite contribution, so the divergence is purely local and does not require the
introduction of any cut-off when performing numerical integrations. Hence, we use the
following definition of the green function:

G(r) =
 exp(ıkr)/(ıkr) for r > 0

1 for r = 0
. (1.16)

1.2.3 Analytic resolution

We start the analytical resolution of the mean-field equation (1.15), as far as
possible before moving to numerics. First, we re-write the equation in term of atomic
dipole β(r, t) and we introduce the laser term (plane wave):

β(r, t)
∂t

= ı∆β(r, t)− ıΩ
2 e

ık·r − Γ
2

∫
ρ(r′)G(r− r′)β(r′, t) dr′. (1.17)

The scattering problem is particularly tractable for spherically symmetric sys-
tems,22,23 and the spherical harmonics Yn,m appears as a natural basis for the angular
dependence as the Green function is diagonal in that basis:

eik|r−r′|

ık|r− r′|
= 4π

∑
n

∑
−n<s<n

Yn,s(θ, φ)Y ∗n,s(θ′, φ′)

×

 jn(kr′)hn(kr) for r > r′

jn(kr)hn(kr′) for r ≤ r′,
(1.18)

where jn and hn are respectively the spherical Bessel and Hankel functions, and where the
polar angle is chosen with reference to the wavevector k = kẑ. For simplicity, we focus on
spherical symmetric cloud densities ρ(r) to allow the projection on the (n,m = 0) orders
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only. Then we decompose the dipole field and the exponential as:

β(r, t) =
∑
n,m

βn(r, t)Yn,0(r̂), (1.19)

eik0.r =
√

4π
∑
n

√
2n+ 1injn(kr)Yn,0(θ, φ). (1.20)

Injecting (1.18) into (1.17) and projecting the result on the (n,m = 0) spherical harmonics
provides the dynamical equations for βn:

dβn(r, t)
dt

= i∆βn(r, t)− E0
√

4π
√

2n+ 1injn(kr) (1.21)

−2πΓ
∫ R

0
dr′ρ(r′)βn(r′, t)×

 jn(kr′)hn(kr)r′2 for r > r′

jn(kr)hn(kr′)r′2 for r ≤ r′
.

The m 6= 0 modes will not be populated by the plane wave as the latter does not break
the rotational symmetry around the Oz axis. Nonetheless, these modes obey the same
equation, so each eigenvalue of (1.21) will be degenerated (2n+ 1) times. Note that in the
microscopic case, no such projection is possible since the disorder breaks the rotational
symmetry.

Since Equation (1.21) does not admit an analytic solution, we solve it numerically
in Sec.1.2.4.

1.2.4 Numerical resolution

In the present section, we project the radial equation (1.21) on a grid to determine
numerically the spectrum and dynamics associated to each spherical harmonics n. While
the field (1.17) can be solved explicitly in the stationary regime9 and gives rise to the Mie
theory, the eigenvalues for the dynamical problem βn(r, t) = exp(−λt)fn(r) are given by
an implicit equation.45 Furthermore, since it corresponds to eigenvalues for the functions
f : [0;R] 7→ [0;R], the associated spectrum is infinite and continuous. Consequently, finding
the eigenvalues by some root algorithm (based on Newton’s method for example) will be
inefficient as the eigenvalues found may not be representative of the overall spectrum.

To deal with this problem, we solve numerically the problem defined in (1.21) by
discretizing the integration window. We define a spatial grid of step h and extension [0 R]
and we note h = R/H where H is the number of integration step in the window [0 R].
However, in our study we focus on Gaussian atomic densities of root mean square σr,
hence we hereafter use an integration range R = 3σr, i.e., thrice the cloud step radius.
Taking this integration range ensures to take into account 95% of the density distribution
of the cloud. h is a new free parameter.

This projection on a grid brings us back to a finite matrix, of size H × H =
(R/h)× (R/h). Indeed, ∀n, (1.21) can now be written as H coupled differential equations:

dβ̂n(r, t)
dt

= −Γ
2 (Dc − 2ıδ) β̂n(r, t) + L, (1.22)
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where β̂n(r, t) = [βn(r1 = 0, t) · · · βn(rH = R, t)], Dc is the matrix defined below (1.23) and
L represents the laser Lj = E0

√
4π
√

2n+ 1injn(krj), (rj = jh).

Equation (1.22) is solved by numerically diagonalizing the matrix D = Dc − 2ıδ to
obtain a set of eigenvalues λjn, j = [1 . . . H] for each mode n. The accuracy of this finite
spectrum to represent the continuous spectrum is evaluated by decreasing the step h and
observing its convergence. The smaller h is, the better the convergence, but the slower the
computation. The value of h is chosen in order to optimize numerical speed calculation
without significant loss of information in the spectrum.

Let us remind that the imaginary part of the diagonal term of Dc is put to 0 to
avoid the divergence due to the interaction of the atom with itself which is discussed
Sec.1.2.2.

The matrix describing the coupling dynamics for the mean-field approach for mode
n reads:

Dc = 4π

h


j2
n(k0h)ρ(h)h2 0 · · · 0

jn(k0h)hn(k0(2h))ρ(h)h2 j2
n(k02h)ρ(2h)(2h)2 · · · 0

... ... . . . ...
jn(k0h)hn(k0R)ρ(h)h2 jn(k02h)hn(k0R)ρ(2h)(2h)2 · · · j2

n(k0R)ρ(R)R2


(1.23)

+ h


0 jn(k0h)hn(k02h)ρ(2h)2h2 · · · jn(k0h)hn(k0R)ρ(R)R2

0 0 · · · jn(k02h)hn(k0R)ρ(R)R2

... ... . . . ...
0 0 0



 .

(1.24)

Dc is hence the equivalent of the matrix D introduced Sec.1.1.3 for the coupled-dipoles
model. As well as we defined eigenvalues λjn (same than the ones introduced Sec.1.1.3) we
define the associated eigenvectors ψjn(t) = ψjn(0)e−Γ

2 λ
j
nt. Going back to the dipole space β

from the eigenmodes space ψ, the dipole function β̂n(rj, t) of mode n at position rj is a
linear combination of exponentials e−Γ

2 λ
j
nt as we have seen with the coupled-dipole model.

The final solution has an infinite number of modes according to the condition n ≥ 0, which
raises a new question. Since we cannot numerically compute an infinite solution, how many
modes n do we need to compute in order to capture the relevant physics? This question is
discussed Sec.2.3.

1.3 Conclusion

We have introduced two models that describe the interaction between light and
disordered medium in the low-intensity regime. One is a microscopic description of the
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medium and contains the richest physics and the second one is a mean-field approach that
does not contain disorder.

A fundamental difference between the microscopic and continuous approach is
that the former possesses a finite spectrum, with N eigenvalues, whereas the latter has
an infinite (continuous) spectrum, as the field is now represented as a continuous field.
Indeed, eigenmodes are defined in Sec.1.1 for j = [1 · · ·N ] where N is the number of
atoms considered whereas, in the mean-field model Sec.1.2, they are defined for n ≥ 0,
j = [1 · · ·H] and 2n+ 1 times degenerated.

The mean-field approach will be, from now on, called Continuous model, Mean-field
model or MF model. The coupled-dipole model will be called Microscopic model. They are
both linear and can be studied through their eigenfunctions and eigenvalues. In this part
we will compare those two models, first by looking at their spectra Chap.2.6 and secondly,
by considering the radiated intensity Chap.3.4.
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2 SPECTRA ANALYSIS

Since the scattering problem is a linear one, many of its properties can be deduced
by studying the spectra using, for instance, a direct diagonalization of the coupling matrix
introduced before when we have defined super- and subradiant modes and eigenvalues. In
the following chapter, we compare the two models, continuous and microscopic, through
their spectra to examine how the super- and subradiant modes and their eigenvalues
behave in both models. Many results have already been shown using the CD model like the
Anderson localization,47–50 the coherent backscattering3,6, 28,51,52 (CBS),53–59 the radiation
trapping,7,60–62 etc. We here compare the microscopic model with the continuous model
to see if the second one contains the same kind of properties as the microscopic model
keeping in mind that we are interested in super- and subradiance. We first look at the
spectra in a complex plane to confirm that super- and subradiant modes are also present
in the continuous model. Then we look at the influence of the integration step on the
eigenvalue distribution. Finally, we compute the participation ratio and the variance in
order to link the temporal description of a mode with its spatial representation.

2.1 Eigenvalues sum convergence

An important property is that the trace of the coupling matrix stays finite for the
microscopic model, the trace of D is ∑N

n=1 λn = N (1− 2ıδ)16,17,45 with the definition of
λn of (1.3). Hence, for a finite number of particles N the existence of superradiant values,
<(λn) > 1, comes with the existence of subradiant ones, <(λn) < 1.

We now look at the same property for the continuous model whereas it has an
infinite number of eigenvalues. Starting from (1.21) without the laser term, the trace is
defined for r = r′ as:

∫
λn(r) dr = i∆− Γ

2 4π
∫ R

0
j2
n(k0r)ρ(r)r2 dr. (2.1)

As the spectrum is infinite, the first term of (2.1) refers to the infinite sum of eigenvalues
for mode n. We have not considered yet the degeneracy due to the spherical harmonics
projection. We introduce the expression (2.2),63

x2

2
(
[Jp(αx)]2 − Jp−1(αx)Jp+1(αx)

)
=
∫
x
[
J2
p (αx)

]2
dx, (2.2)
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in (2.1). For simplicity, we consider a uniform distribution ρ(r) = ρ0 = N/V .∫
λn(r) dr − ı∆ = −Γ

2 4π
∫ R

0
j2
n(k0r)ρ0r

2 dr, (2.3)

= −Γ
2 4π π

2k0

∫ R

0
J2
n+1/2(k0r)ρ0r dr, (2.4)

= −Γ
2 4π π

2k0
ρ0
R2

2

([
Jn+1/2(k0R)

]2
− Jn−1/2(k0R)Jn+3/2(k0R)

)
,(2.5)

= − Γ
2k0

π2ρ0R
2
([
Jn+1/2(k0R)

]2
− Jn−1/2(k0R)Jn+3/2(k0R)

)
. (2.6)

We have hence replaced an integral with a finite sum. We now introduce the 2n + 1
degeneracy, sum over the n ≥ 0 modes and use ρ = N/(4

3πR
3):

∑
n≥0

∫
λn(r) dr = −Γ

2
∑
n≤0

(2n+ 1)
{
−2ıδ +N

3
2
(
[jn(k0R)]2 − Jn−1(k0R)Jn+1(k0R)

)}
.(2.7)

The term 2n+1 refers to the degeneracy of the eigenvalues. Indeed, for a fixed n, every mode
(n,m), have the same eigenvalue λn for −n ≤ m ≤ n. We see that the imaginary part of
the sum given by the −2ıδ term diverges. However, we have numerically computed the real
part of (2.1) with large enough number of modes Nm with ∑n≥0

∫
λn = ∑Nm−1

n=0
∑H
j=1 λn,j.

After a set of simulations, varying the integration step h and the number of atoms N it
appears that the property is conserved: ∑n

∑H
j=1<(λn,j) = N .

The conservation of the trace of the scattering matrix has an important consequence:
in the microscopic model the emergence of short lifetimes (λ > 1, i.e., superradiance)
comes automatically with that of long lifetimes (λ < 1, also known as subradiance) as the
sum over the N eigenvalues must be equal to N (in units of Γ/2). In the continuous model,
the finite trace resulting from the infinite sum over the continuous spectrum means that
superradiance is not guaranteed, but rather that there is the series of eigenvalues quickly
converges to zero; consequently, there are arbitrarily long lifetimes in the continuous model.
Indeed, <(λn,j) → 0 for increasing n. If the continuous model is to be thought as an
approximation of the microscopic model, this means that the disorder present in the latter
will actually limit the part of the spectrum that accurately represents it, and will thus
limit the lifetimes present in the system. We see in the next section Sec.2.4 that it is not
what happens, indeed, superradiant eigenvalues are also present in the MF model.

2.2 Integration step

The integration step h is a numerical resolution parameter that appears solving the
continuous model equation (1.21). Smaller h values mean larger integration time. Fig.3, we
represent eigenvalues of the first mode λ0,j for three integration steps. We clearly see that
after some point smaller values of h does not impact much the superradiant eigenvalues
but add more subradiant ones in the tail (see inset). As the numerical resolution is of
10−14, eigenvalues with a decay rate smaller than this threshold cannot be trusted so we
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Figure 3 – Eigenvalues λn for n = 0 represented in the complex plane for three different
integration steps. Uniform sphere of radius R, k0R = 11.5, N = 1000 atoms,
an optical thickness b0 = 6N/(k0R)2 = 15 and a density ρλ3 = 0.5.

Source: By the author

will keep a reasonable value of h in order to lower computation time. We have checked
that h = 100k0R/(2π) captures well the set of eigenvalues of the system.

2.3 Number of modes computed

Another question raised by the mean-field model is the infinite number of modes
as n goes from zero to the infinity. The radial behaviour of the modes is given by Bessel
functions as we see in the Mie scattering theory.23 On the Fig.4, we represent the Bessel
functions for different values of n. They oscillate but the global envelop decreases with
the increase of the variable r. Moreover, They have the properties jn>0(r = 0) = 0
and j′n(r = 0) = 0. And we observe that, close to the origin, as n increases, Bessel
functions stay close to the x-axis for further r: it can be mathematicaly formalized by
j′′n(r = 0) ≤ j′′n′(r = 0) for n′ ≥ n. Hence, for a large enough value of the index nc, jnc(r)
will stay negligeable in the interval [0 R] compare to the Bessel function with index n > nc.
When it happens we consider that modes n ≥ nc are not relevant anymore. As it is commun
in Mie scattering theory,23 we consider that the nc = 1.5k0R first modes are enough to
describe accurately the dynamics, the radial part of mode n corresponding to the n−th
spherical Bessel function.



52 Chapter 2 Spectra analysis

Figure 4 – Spherical Bessel functions of the first kind jn(r).

Source: By the author

2.4 Spectra: complex plan representation

In this section, we compare the eigenvalues of both models by representing them in
the complex plane: the normalized decay rate of the modes in the y-axis and the normalized
energy shift in the x-axis. First, as discussed Sec.2.1, we see in Fig.5 that the continuous
model contains superradiant eigenvalues.
Then we see that eigenvalues are spread in the shape of a "funnel" for both models. However,
we observed that for a uniform density distribution, the eigenvalues of the continuous
model would remain on the edge of the "funnel". The spread of the MF model eigenvalues
for a Gaussian distribution might be explained by the fact that the Gaussian distribution
can be seen as a superposition of uniform spheres of different radius. Hence, the MF model
eigenvalue, with a Gaussian distribution of the atoms, are represented over a superposition
of "funnel" with different radius. Moreover, if we increase the density, a empty hole of
eigenvalues appears in the middle of the "funnel". The Marchenko-Pastur64 law states that
in a dilute regime ρλ3 < 1, where the size of the system is larger than the wavelength
k0L > 2π and for many atoms N � 1, the eigenvalues represented in a complex plane
(linear scale) are contained in a disc of radius

√
b0. Those effects have been discussed in

L.Bellando’s thesis25 as well as the distribution of eigenvalues associated to the pairs of
close atoms.34 Indeed, one superradiant and one subradiant tail would appear in Fig.5 due
to the increase of the number of pairs at larger density. It introduces an interesting physics
but makes things harder to interpret as they create long-lived modes that are related to
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Figure 5 – Eigenvalues in the complex plane λn = γn + ıωn for the microscopic (blues
crosses) and continuous (red circles) models. Simulation realized with a Gaussian
cloud of N = 2000 particles and a root mean square (rms) of σ ≈ 12 (b0 ≈ 28.4),
at resonance (δ = 0).

Source: By the author

neither the subradiance nor the diffusion of light.

Interestingly, both models contain super- and subradiant modes as discussed in
Sec.2.1. It is not surprising for the microscopic model as it contains a finite number N of
eigenvalues λn and the sum is finite and equal to N . So, superradiant modes go with the
existence of subradiant modes. It is more surprising for the MF model as it has an infinite
number of eigenvalues (still with a finite sum). In the inset, we observe that the tail of
subradiant eigenvalues for the MF model has arbitrarily small eigenvalues. Hence, the
infinite number of eigenvalues for the MF model does not add superradiant eigenvalues
but adds subradiant eigenvalues with infinitely long lifetimes (they are here limited by
numeric). It also shows that the MF model also presents some subradiance.

Let us comment that throughout this part of the thesis, Part. II, the simulations
are realized below the Anderson localization threshold34,47 (ρλ3 ≈ 22), so the subradiant
modes observed are not associated with exponentially localized modes but rather to
subradiance in dilute systems.18,65

In Fig.5 one can observe that the tail of longest lifetimes in the microscopic model
presents a shift in energy which is absent from the continuous model. Remark that we here
use an exclusion volume (such as the distance between two atoms k0 min(|rj − ri|) > 3)
to avoid pair effects as discussed in Refs.18,35–38 In order to understand the origin of
this shift, we look at the scaling laws describing it. Practically, we compute the average
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energy shift of the 5% most subradiant eigenvalues, and observe that its scales as N/(kR)a

with a ≈ 4 ± 0.5, see Fig.6. It is thus different from the scaling of the Lorentz-Lorenz
and collective Lamb shift, which scales with the density. Remark that since this shift is
associated with the subradiant tail, it may not be visible in the stationary state, but may
instead require a study of the late-time discharge dynamics of the cloud.
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Figure 6 – Average energy shift of 5% most subradiant eigenvalues, for a cloud with
Gaussian density and scalar light, illuminated at resonance for the microscopic
model.

Source: By the author

2.5 Participation Ratio and mode size

Scattering modes with long lifetimes can be associated with spatial localization, as
in the case of Anderson localization or in whispering gallery modes. These latter modes
are not present in our system due to the Gaussian density considered: Smooth densities
do not allow for surface modes to propagate by internal reflection.9 As for long lifetimes
modes inside the cloud, they have been shown to be responsible, in the microscopic model
of scalar light, for a localization transition.47,66

Let us first check the connection between the lifetime of the modes and their spatial
extension by computing their participation ration (PR), which quantifies the number of
atoms participating substantially to it. The PR of mode n is defined in, respectivelly, the
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microscopic and MF model as:

PRn =

(∑
j |βnj |2

)2

∑
j |βnj |4

, (2.8)

PRn = (
∫
ρ(r)|βn(r)|2dr)2∫
ρ(r)|βn(r)|4 dr . (2.9)

Fig.7 depicts the PR for both models and the PRs are qualitatively similar:
Superradiant modes have a large PR, which correspond to spatially extended modes;
longer lifetimes are associated to a lower PR, and thus to a stronger localization in space.
Note that, as the mean-field approach contains no disorder, one does not expect a disorder-
based localization transition (see Part.III), with the emergence of exponentially localized
modes. Hence, Fig.7 has not any localized modes even for really low PRs.
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Figure 7 – Participation ratio of the microscopic (left) and MF (right) models for a
Gaussian cloud with N = 2000 atoms with optical thickness b0 ≈ 30, at
resonance.

Source: By the author

The participation ratio quantifies how many atoms participate in the mode. It is
intuitive to think that atoms composing a mode of low PR are close to each other and
localized in space whereas for a large PR atoms would be spread into the cloud. To quantify
better how spread are the modes with a large PR, we monitor their second momentum or
mode size. This study is done only for the microscopic model. It is given by computing
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the average radius of a mode for the microscopic model :

σ2
n =

∑
j

|βnj |2||rj − rCM
n ||2, (2.10)

rCM
n =

∑
j |βnj |2rj∑
j |βnj |2

. (2.11)

It quantifies if one mode is spatially spread or localized. We clearly see in Fig.8
that the most subradiant modes are localized as they have a low σ/R. It seems that it
exists superradiant modes that can be both spatially spread or localized.

Figure 8 – Mode size with a Gaussian density and scalar light, N = 2000 atoms, b0 = 27.86
and at resonance, δ = 0, using microscopic model.

Source: By the author

We conclude from the two previous figures that superradiant modes are more likely
delocalized and subradiant modes localized for both models. We show in Fig.9 the spatial
representation of one superradiant and one subradiant mode, the size of the markers giving
the weight of the given particle into the mode. We clearly see that the superradiant mode
is spread through all the cloud and atoms participate more or less equally. On the contrary,
the subradiant mode is clearly localized on few particles.

2.6 Conclusion

The main result of this section is that the continuous model has similar properties
than the microscopic model on a spectra point of view. More specifically, super- and
subradiant modes are present in both models. Moreover, subradiant modes are spatially
localized (not Anderson localized neither whispering gallery modes), differently from
superradiant modes.



2.6 Conclusion 57

(a) γ1 = 8.10 (b) γ1805 = 0.0057

Figure 9 – Mode representation in the xyz plane with a Gaussian density and scalar light
(no exclusion volume), N = 2000 atoms, b0 = 30 and at resonance δ = 0 using
CD model.

Source: By the author
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3 RADIATED INTENSITY

We have so far compared the two models through their eigenvalues, eigenvectors
and PRs. Those quantities are extracted from the matrix D introduced in Ch.1.3 and
results in the geometry of the cloud: disorder, density, size, etc. However, this analysis does
not include the incident laser and, more precisely, the coupling between the laser and the
modes. Indeed, in the previous section, all modes were treated equally despite they are not
populated equally by the laser. Different modes may couple with very different amplitudes
to the incident wave, so the eigenvalue analysis reveals only part of the information. In
particular, the radiated field may carry the radiation from only a few modes. For instance,
superradiant modes are less important if they are not populated by the laser, the same
holds for subradiant modes. Important here means that the non-populated modes do not
contribute significantly to the radiated field. Eigenmodes appear to have similar features
in the two models but it reveals only part of the information on the cloud radiation as it
does not say how a plane wave couples to each mode. The coupling between the laser and
the modes is an important question for experiments. For instance, localized or super- and
subradiant modes can be observed only if they are populated.
One parameter used, theoretically and experimentally, to control the coupling between
the light and the atoms, is the detuning between the atomic frequency transition and the
laser frequency ∆ = ω0 − ωa. One of the advantages of working with cold atoms is to be
able to work really close to resonance ∆ = 0, thanks to the negligible Doppler effect. In
a recent work,67 the role of the laser detuning has been investigated to directly look at
the steady-state population of modes. In our work, we do not investigate directly modes
population but rather the dynamics of the radiation of the cloud which is a consequence
of this population.
The optical thickness is defined as b(δ) = b0/(1+4∆2/Γ2) and characterizes the propagation
of light through the cloud in the laser direction. It is used to distinguish two regimes: the
single scattering regime, b� 1 and the multiple scattering regime, b� 1. A remarkable
aspect of the coupled-dipole problem is that at large detuning, despite the cloud becomes
essentially transparent to the incident light, superradiance and subradiance are still present.
Those effects are nonintuitive as one can expect that in the single scattering regime atoms
behave independently and cooperative scattering effects vanish. Looking at those effects
with the continuous model will help to better understand its origins and for instance the
role of disorder. These two phenomena present a scaling with the resonant optical thickness
b0 = 2N/(kσ2

r).18,35,39,65,68,69 We will discuss this scaling for the continuous model in this
section. It is different, for example, from radiation trapping which scales with the optical
thickness b(δ) = b0/(1 + 4∆2/Γ2) and vanishes in the large detuning limit (b→ 0).7,60,61

Hence, subradiance has to be distinguished from radiation trapping. Radiation trapping
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can be described by the radiative transfer equation, that does not include phases and
interferences, whereas the subradiance cannot as it is a destructive interference effect. In
this thesis, we are focusing on subradiance rather than radiation trapping.

We study the laser-modes coupling by investigating super- and subradiance phe-
nomena with the microscopic and continuous models. To do so, we consider a plane wave
as an incident laser that charges the cloud for a long time (50Γ−1), before being turned off
abruptly (at t = 0) then we compute the radiated intensity I(t) ∝ |Esc(t)|2 that is derived
below. The cloud is modelled by a Gaussian sphere distribution of rms size σ. For the
continuous model, the radius of integration R is taken as R = 3σ. We also introduce, for
the microscopic model, an exclusion radius to exclude pair physics.

3.1 Scattered intensity

The intensity at position k = k0k̂, scattered by the cloud, is defined as Isc(k) =
1
2ε0c|Esc(k)|2. For the microscopic model the scattered field is:

EM
sc (r, t) = −~Γ

2d

N∑
j=1

βj(t)
eık0|r−rj|2

k0|r− rj|2
, (3.1)

with d the matrix dipole element of the transition and βj are the dipole functions computed
from equation (1.2). In the far field limit (Fraunhofer approximation70) we have |r− rj| ≈
r− r · rj/r, then k0|r− rj| ≈ k0r−k · rj . It allows us to use a simpler expression. Moreover,
in all this chapter Ch.3.4 we focus on the normalized intensity i.e. Isc(r, t)/Isc(r, t = 0) so
we do not carry the constants. Finally, the radiated intensity from the cloud, in the far
field limit, in direction n can be expressed for the two models as:

IM(n, t) ∝
∣∣∣∣∣∣
N∑
j=1

βj(t)e−ıkn.rj

∣∣∣∣∣∣
2

, (3.2)

IC(n, t) ∝
∣∣∣∣∫
V
ρ(r)β(r, t)e−ıkn.r d3r

∣∣∣∣2 . (3.3)

Dipole functions are computed using (1.2) and (1.21) and finally the radiated intensity is
computed using expression (3.2) and (3.3).

In fig.10, we represent an example of the intensity as a function of time for the
microscopic and the continuous models, for a cloud with a Gaussian distribution and after
the laser was on for 50Γ−1. We see that the emission of the cloud is first characterized by
the fast decay associated with the superradiant modes, which dominates the short time
dynamics as they initially carry most of the energy. Yet, they quickly lose their population
and soon the long-lived emission of the subradiant modes take over. This first observation is
a confirmation that both models describe a super- and subradiant dynamics. We precise that
superradiance, respectively subradiant, is not characterized by only the most superradiant
eigenvalue max(<(γn)), respectively the most subradiant eigenvalue min(<(γn)), but rather
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results from the competition between a set of superradiant, respectively subradiant, modes
with different energies and populations. Hence, super- and subradiant slope that can be
extracted from Fig.10 are not directly related to the decay rate of one specific mode.

The presence of super- and subradiant modes in both models was already shown in
Sec.2.6 by looking at the spectra but Fig.10 gives more information about their population.
An interesting result is that super- and subradiance remain for large detuning where the
single scattering regime is reached (δ = −10 curves, corresponding to an optical thickness
of b ∼ 0.07). It is a nontrivial result as one may expect that in the deep single scattering
regime, particles behave independently. It shows that cooperative effects still exist far
from resonance. Indeed, several works demonstrated that both the 3D superradiant and
subradiant rates in large dilute clouds are characterized by a "cooperativity" parameter,
namely the resonant optical thickness b0 = 2N/(kσ2).18,35,39,65,69 Finding this scaling with
the continuous model will be one objective of Sec.3.2 and Sec.3.3.
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Figure 10 – Emission dynamics of the forward scattered light after the laser is switched
off (t = 0), for the microscopic and the MF models. Simulations realized for
a Gaussian cloud with b0 ≈ 28 and N = 1900 atoms, close (δ = −1) and far
(δ = −10) from resonance. In the forward direction θ = 0.

Source: By the author

The two models also present significant oscillations of the intensity during the decay
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dynamics, when many modes with similar energies compete. Those oscillations can be
lowered by averaging the intensity over many realizations for the microscopic model,18,65

yet it is not possible for the MF model as it contains no disorder. It will be a limitation
for subradiant investigations, as we will see in Sec.3.3.
We want to illustrate that these oscillations result in the difference of the energy shift
between the modes. The imaginary part of the eigenmodes introduce a competition between
the modes while the intensity is computed. To understand those oscillations, and the
idea of competition between the energy shift, we take the simple example of the function
I(t) = |e−(γ1+ıω)t + e−(γ2−ıω)t|2 that is the module square of two exponential functions. It is
supposed to represent the radiated intensity of two identical particles of eigenvalues γ1 + ıω

and γ2 + ıω with the property γ1 + γ2 = 2. First case: if γ1 = γ2 = 1 then the intensity is
I(t) = e−2t4 cos2(ωt) and follow an exponential with oscillations of frequency of ω/2π. If
γ � ω oscillations of the cosine will not be visible as the intensity will oscillate on a long
time compared to the exponential decay. Second case: if ω = 0 and the decay rates differ
from more than one decade. Then the curve will be, in semilogarithmic representation,
two-lines with two slopes of 1/γ1 and 1/γ2, we see on the orange curve in Fig.11 the two
asymptote behaviours. Considering the intermediate case, let us take for instance γ1 = 0.1
that refers to the long-lifetime and γ2 = 1.9 that drives the short times and we represent
Fig.11 the intensity for different exponents that might model phases. On one hand, when
ω � γ1 oscillations are larger than the longer lifetime of the exponential. On the other
hand, if ω � γ2, oscillations represent a wave packet where the envelop is the exponentials.
This discussion shows that the oscillations in the intensity computed by (3.2) are due to
the energy shift difference between modes. Extending this simple two-particles example to
an N -body systems leads to the complex situation where we have a competition between
many modes between all the modes.

3.2 Superradiant rate

We see in Fig.10 that we can extract a slop at the origin to characterized the
short time behaviour of the radiated intensity that is called the superradiance (SR) rate.
Theoretical work using the coupled dipoles model65 and experimental analysis18,35,35,39,69

showed that the SR rate ΓN scale with b0 as ΓN = (1 + b0/12) Γ. We compare the two
models at large detuning when refraction dominates on diffusion in the forward direction.
Indeed, the two models describe accurately refraction whereas diffusion is not well-described
by the continuous model. A detailed study of the superradiant rate dependency on the
cloud characteristics (size and particle number) and on the light-atom coupling (detuning)
is shown in Fig.12 in the forward direction. It reveals that just as in the microscopic
approach,35 the relevant scaling parameter at large detuning δ > 2 is the resonant optical
thickness as the SR rate scales linearly with b0. Consequently, the phenomenon is still
present in the large detuning limit, only subradiant eigenmodes population decreases as the
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Figure 11 – We plot
∣∣∣e−(0.1+ıω)t + e−(1.9+ıω)t

∣∣∣2 that refers to the radiated intensity of two
modes as a function of the time t.

Source: By the author

cloud turns transparent. It means that for a given b0, the slope at the origin (supperradiant
rate) would be the same but the SR regime would be shorter in time as the SR modes are
less populated (illustrated in Fig.10).
Moreover, we see an increase in the superradiance close to resonance. In stationary regime
(when the laser is kept on), the intensity in the forward direction follows the Mie lobes as
illustrated in Fig.14. First, the main lobe decreases with the detuning increases. Then, in
the specific forward direction, a significant part of the light is refracted from the border
of the cloud in single scattering (due to the Gaussian distribution at the border of the
cloud). Those two effects, the decrease of the forward lobe and the presence of the single
scattering, explain that the SR rate increases at resonance in the forward direction.

The scaling of the SR rate with b0 in the MF model shows that it captures well this
cooperative phenomenon, despite a discrepancy of a factor ∼ 2 between the two models.

Let us now comment about the low-b0 limit. We see in Fig.13 that the continuous
model presents a SR rate of ΓSR that vanish in the low-b0 limit whereas in the microscopic
model the single-atom physics is recovered in the very dilute limit (ΓSR → Γ). It is
consistent with the fact that the continuous approach requires many particles to be a valid
approach.
Interestingly, the microscopic model shows an enhanced SR rate compared to the continuous
model, which suggests disorder is actually favourable to SR.
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(a) Continuous model

(b) Microscopic model

Figure 12 – Superradiant rate for the continuous (a) and microscopic (a) models at reso-
nance and out of resonance, for different values of the detuning. Simulations
realized for a Gaussian cloud of N = 1000 atoms in the forward direction
θ = 0.

Source: By the author

3.2.1 Angular dependency

Superradiance is usually explained by a coherent emission by in-phase dipoles. This
typically leads to look for SR in the direction of the coherent driving, where a coherent
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Figure 13 – SR rate in the forward direction (θ = 0) as a function of the resonant optical
thickness for the microscopic and mean-field models, at resonance (δ = 0) and
out of resonance (δ = −5, −10). Simulations realized for a spherical Gaussian
cloud of N = 1000 atoms.
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phase pattern is imprinted.15 Yet, it has been shown recently that the off-axis emission was
also superradiant35 despite the atomic dipoles are not expected to exhibit specific phase
pattern in the transverse directions, where diffuse light is emitted. It was an unexpected
result that we also observe in Fig.14(a) where we represent the angular dependence of the
short-time emission rate in the microscopic model and at large detuning. In this regime
of large detuning, radiation trapping is negligible. Despite strong fluctuations due to the
atomic disorder, it is superradiant in almost all directions. At initial times, superradiant
rates appear only in arbitrary directions, depending on the specific realization. As reported
previously,35 SR is slightly weaker in the direction of the driving where more energy is
radiated.
Fig.14(b) is the same as Fig.14(a) but for the continuous model. It presents similar features
than for the microscopic model: SR rate exists in every direction and is lower in the
forward direction. Indeed, Mie scattering lobes match with lower values of ΓN .
This preservation of the off-axis SR rate in both models is particularly surprising considering
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that in these directions, for optically dense clouds the diffuse light dominates in the
microscopic model whereas only Mie lobes of coherent scattering are present in the
MF model. Hence, we observe two kinds of superradiance: one arises from disorder
and so diffusion and the other one from coherent scattering light. The dominance of one
superradiance on the other is not studied here. Since the continuous model does not include
diffuse light, the superradiance characteristics of the latter, as well as its competition with
the off-axis coherent light, cannot be studied.

In addition, we observe that except for the forward direction, the SR rate is
relatively constant in all directions as already observed.35 It has been showed38 that the
subradiance rate is independent of the angle of observation. Hence, at large detuning,
radiation trapping is negligible and the relative population of super- and subradiant modes
is quite constant.67 They are just all less populated as δ increases and the cloud become
transparent. The picture is the following far from resonance: the laser sees all the modes
equally and does not make a difference between modes with small energy shift difference
(δ � ωn − ωn+1). On the contrary, if δ is on the order of ωn (see Fig.5) the laser will more
likely coupled with some modes.

3.3 Subradiance

Regarding subradiance, the long-lived modes are also present in the MF model,
which can be somehow counter-intuitive: SR modes are associated with in-phase dipoles
whereas subradiant modes are associated with less regular phase patterns. Thus, the MF
model and its macroscopic modes appear as less suitable to support subradiant modes,
as compared to the microscopic disordered model. However, higher-order modes in the
MF approach (i.e., corresponding to large indexes n) correspond to higher-order spherical
harmonics, which precisely present spatial pattern with a large number of oscillations (see
Fig.15). This analysis is also consistent with the fact that the large-n limit is associated
with deeply subradiant modes (see inset of Fig.5). The picture that out-of-phase modes
are responsible for subradiance holds with the MF model. The spatial representation of
one subradiant mode shows a localized mode in the center of the cloud (not in the sense
of Anderson localization) which is consistent with Fig.9 done for the microscopic model.

Like we did for the SR rate in section Sec.3.2, a more quantitative description of
subradiance requires the characterization of the emission rate at late times (t > 1/Γ).
Because of the oscillations of the radiated intensity originating in the interference between
several modes with slightly different energy, an averaging procedure is necessary to obtain
monotonic decay curves and extract a subradiant rate. Whereas this is performed by
averaging over disorder configurations in the microscopic case,18,65 the intensity in the
MF model cannot be averaged, as it contains no disorder. Furthermore, creating different
configurations by slightly changing the cloud characteristics (size, density, particle number)
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Figure 14 – Angular dependence of the initial radiated intensity I(0) (blue plain line) and
SR rate ΓN (red dash–dotted line) in logscale for the (a) microscopic and (b)
mean-field models. The rate is computed over the time window t ∈ [0; 0.1]/Γ for
a cloud charged by a plane-wave during a time 50Γ−1 until t = 0. Simulations
realized for a Gaussian cloud with b0 = 28.7, δ = −10 and N = 1908. The
gray circles describe the level of the SR rate, the thick one corresponding to
the single–atom rate ΓN = 1.

Source: By the author

does not allow to smooth efficiently the intensity dynamics as the modes (and their energy)
is only slightly affected. Moreover, there is the question of the fitting window for the
subradiant rate that is not trivial. Indeed, after the superradiant decay, many different
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(a) (b)

Figure 15 – Spatial (a) intensity and (b) phase profiles of a subradiant mode of the MF
model: γn,j ≈ 0.04Γ, corresponding to (n, j) = (1, 13) for a Gaussian cloud
with the same parameters as in Fig.5.

Source: By the author

subradiant decay rates may be observed, depending on the temporal window considered.
At resonance, the slope might refer to the radiation trapping and not the subradiance.
Finally, experimentally the signal that can be detected leads to considering intensities of
at least 10−6 as compared to the one in the stationary regime. In spite of these limitations,
a subradiance rate analysis is done.38

Although a quantitative comparison is difficult to obtain, the cooperative nature of
the subradiance observed in the MF model, as opposed to the incoherent phenomenon of
radiation trapping, can be assessed by studying the decay dynamics in the large-detuning
limit, where the cloud optical thickness vanishes. Fig.16 describes the decay dynamics for
the two models, for a single realization and for different values of cloud sizes: apart from
the qualitative resemblance between the two dynamics, an important point is that in both
cases the far-detuned limit does not correspond to single-atom dynamics, i.e., collective
modes are still present, associated with decay rates very different from the single atom one.
This confirms the existence of subradiance in the MF model, in a regime where radiation
trapping is absent.

3.4 Conclusion

In this section, we showed that super- and subradiance is present in both models
and even at large detuning, cooperative effects remain. Out-of-resonance, SR scales with b0

for both models. Subradiance still exists in the single scattering regime. Subradiance can
be explained by out-of-phase modes in opposition of in-phase dipoles for superradiance.
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Part III

Continuous model for Anderson localization
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4 INTRODUCTION TO ANDERSON LOCALIZATION

4.1 Origin of Anderson localization

In his original paper,11 P.W. Anderson first established that diffusion of an electron
in the absence of electron-electron interactions might vanish by increasing the disorder of
a random potential. The original idea was to study the probability for one electron to stay
on one lattice site or to spread all over the medium. A particle in a random potential can
escape and hence diffuse when its energy is greater than the maximal value. On the other
hand, the particle can be trapped in a local minimum of the potential. For a quantum
particle, the energy needed to make a transition between a localized and diffusive regime
is greater than the maximal energy when tunnelling effects appear, the threshold is called
the Mobility-edge.

Anderson localization (AL) was much later (the 70’s)71 interpreted as a universal
wave phenomenon that brought various communities (Electronics, Optics, Acoustics,
Condensed matter, . . .) to theoretically and experimentally search for it. Indeed, AL is
now interpreted as an interference effect of waves propagating in a disordered media.

Since then, there are many ways to present what is now called AL. One interpretation
refers to the exponential decay of the wave function or the exponential localization of the
mode that can be understood from a mathematical point of view.72 If we consider the
Hamiltonian H = T + V where V is an infinite disordered potential and T the kinetic
energy, and ψn(r) is the eigenfunction of mode n, then the AL regime is reached when for
all modes n of the system, the wave function is spatially exponentially localized. Eigenmode
n is AL localized for a given realization (it means for a random disordered potential but
with the same disorder strength) when |ψn(r)| ≤ Cn exp

(
− |r−rn|

2ξ

)
where Cn is a constant

and ξ is the localization length independent of the realization. The localization length is
an important parameter as it tells how wide the mode is. We easily understand that if all
eigenmodes are spatially disconnected they cannot interact with each other, and so there
is no transport/diffusion/conduction. A localized mode, by definition, does not participate
in the transport. An interesting question arises about the percentage of localized mode
needed to be an insulator. Or, in the other way around, how many extended modes are
needed to support transport. The AL regime is reached when all modes are localized. The
AL phase transition is the abrupt transition between a diffusive regime and an insulator
when increasing the disorder of the potential. AL can, therefore, be understood from a
transport point of view.
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4.2 Experiments

As the AL is a universal wave phenomenon; many fields have been looking for
it ranging from quantum optics to acoustics. Even though it was first introduced in
electronics for electron localization, the experiment is hard to implement as electron-
electron interaction is too difficult to handle.

The first ever observation of AL for a wave was performed in 200873 for ultrasound
in 3D. They measured the time-dependent transmission and showed non-Gaussian statistics
that are related to Anderson localization as it was in agreement with the predictions of
the self-consistent theory for AL.

Replacing electrons with particles appeared to be an easier way to see AL. Local-
ization of matter in a BEC was reported recently in the group of A. Aspect in 1D74 and in
Florence,75 in 3D. In the first experiment, they measured the density profile of the BEC
and showed an exponential decay which is a direct measure of the Anderson localization.
In the second one, they produced a random potential with two speckle fields, and they
measured the energy distribution by measuring the speed of the freely expanding particles
after the driving field is turned off. They also managed to measure the mobility edge for
the 3D AL of matter waves.

Ten years ago, Anderson localization was reported76 for microwaves in a quasi-1D
system by looking at the statistics of the transmitted intensity. To do so, they managed to
distinguish absorption from actual localization.

Since the 90’s, the search of Anderson localization of light in 3D is a lifetime quest
for the experimentalist. Many groups have claimed to observe AL of light.19,77–80 The most
recent one19 measured the stationary transmitted intensity and showed an exponential
decay with the sample size. However, it was later disapproved as the localization was
explained by a small residue of absorption. In another experiment,19,80 they measured the
temporal decay of the intensity in transmission and observed a deviation from the classical
diffusion what they interpreted as Anderson localization but it was later corrected. In
one of the first experiments, they did observe that the transmission in time became very
long. This was interpreted as an indication that the mean free path was very small, which
would mean that the light was close to localization. It turned out, however, that the long
transmission times were due to the light’s spending much time inside the scatterers. This
meant that the Anderson localization was still out of reach.81

We see from this list of experiments that the experimental search of Anderson
localization is rich. A diversity of waves are involved (microwave, acoustic wave, matter
wave or light) from 1D to 3D. Various methods and observables have been used to observe
Anderson localization: direct measurement of the density profile, intensity transmission in
time and in the steady-state, statistics on the transmitted intensity, etc. In the specific
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case of the localization of light in cold atoms, a debate is still on about existence of a
signature of the AL in the mean transmitted intensity, in time or in the stationary regime.
Indeed, one important advantage of cold atoms is that they are not subject to absorption
but complex physics is introduced due to collective effects.

4.3 Two Criterion for phase transition

4.3.1 Ioffe-Regel criterion

AL is a wave phenomenon. In a dilute regime, a wave propagates between two
scatter events without losses and it is well-described by the diffusion equation. This simple
picture breaks down when the mean free path (average distance between two scatter
events) is on the order of the wave wavelength ` ∼ λ and interferences that occur during
the scattering process matter. The wave is hence localized in a small region of space. The
transition between these two regimes refers to the mobility edge. It turns out that in one
and two dimensions, waves are always localized, so the Ioffe-Regel criterion makes sense
only for the 3D case. It can be expressed as k`� 1 in the dilute regime and k` ≤ 1 in the
localized regime (k is the wavevector). It was introduced in the work of A. F. Ioffe and A.
R. Regel in 196082 for infinite mediums.

According to the Ioffe-Regel criterion (1960), the diffusion constant tends to zero
in the limit of a very strong scattering regime (` ∼ λ). The Anderson localized regime can
appear at a finite scattering strength, where the diffusion constant becomes zero. It can be
explained by the existence of scattering paths that follow a loop and return to the same
scatterer. Those loops are more likely to appear in the strong scattering regime which is
where diffusion constant is reduced.

4.3.2 Thouless criterion

An important step was done by Thouless, 1974, 1977 and Wegner, 1976, when
they looked at the Anderson localization scaling with the sample size L whereas the
Ioffe-Regel model holds for an infinite medium. The Thouless number, introduced in,83 is a
dimensionless number defined as g(L) = ∆E(L)

dE(L)/dN . It is important to understand that even
if the Thouless number is usually called dimensionless conductance, it is not directly related
to the conductance. The scaling theory of localization developed by Abrahams, Licciardello
and Ramakrishnan (1979) showed that near the localization, the dimensionless conductance
g is the only important parameter. They showed that in one and two dimensions there is
no phase transition as the system is always localized, whereas in three dimensions there
exists one transition.
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4.4 Theoretical work

Here we present some recent theoretical results on the localization of light. The oldest
method to study AL is based on the scaling analysis introduced in.84–86 A fundamental
breakthrough was done in 197983 when the link between a dimensionless parameter (called
Thouless number) and the energy levels was explained. This relation is really useful when
applied to the coupled-dipole equations, what gave rich results in the past decade. The
scaling analysis has been refined by focussing on the subradiant modes as the long lifetime
modes have been shown to be more likely localized.47 It has been shown that a phase
transition between a diffusive to a localized regime exists when a scalar model of light is
considered34,40,47,48,66 whereas it disappears when the vectorial behaviour of the light is
taken into account.34,47 Moreover, introducing an intense magnetic field allows reaching a
localized regime.49,87 Until this year, it was thought that the AL phase transition might
exclusively be a density effect but then an asymmetry between red and blue detuning was
observed.48,49
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5 ANDERSON LOCALIZATION WITH CONTINUOUS MODEL

We here perform a scaling analysis using both the microscopic and the continuous
model. It will give us more elements to understand the role of the disorder and the
subradiance on the Anderson Localization. We have shown in the previous Part.II that the
continuous model describes subradiance even-though it does not contain disorder. However,
it has been shown that localization comes from long lifetime modes.88 The question is: do
those long lifetime modes that are localized are subradiant modes or are they independent?
The MF model is appropriate to answer this question as it does not contain disorder so
we do not expect localization. It would mean that the localization is due to long lifetime
modes independent than the subradiant ones.

5.1 Thouless number and scaling function for localization of light

The Thouless number was originally introduced in electronic,83,86 for a conductor
cube of size L, in a uniform potential with sufficient irregularity to describe a bulk metal
and at zero temperature with the expression:

g = ∆E(L)
dE(L)/dN

(
= G(L)

e2/~

)
, (5.1)

g is the Thouless number, also called dimensionless conductance or normalized conductance,
∆E(L) is the geometric average of the fluctuation in energy levels caused by non-periodic
boundaries and dE(L)/dN is the average spacing between energy levels. L is the side
length of the cube, e the electric charge and ~ the normalized Plank constant. The
fundamental result of Thouless and al83 is the link made between the energy levels and
the electric conductance G(L). Unfortunately, such a relation does not exist for light
propagation through a 3D disorder medium as the conductance is not defined. In one and
quasi-one dimension, the conductance can be linked to the average transmission through
the channels.76,89–94 Anderson localization, from its most fundamental aspect, is a wave
phenomena and has strong similarities between electrons and photons. Hence, the Thouless
number is usually interpreted by the community as a normalized conductance even for
light. From (5.1) we observe that the Thouless number is a function of the system size L
what allows to define the scaling function β(g(L)) = ∂ ln(g(L))

∂ ln(L) . This function is fundamental
and it is used to distinguish the localized regime β < 0 from the dilute regime β > 0 in
the thermodynamic limit. It is illustrated in Fig.17 extracted from83 where we see that in
dimension strictly lower than two, the system is always localized where, in 3D a phase
transition exists. Another representation of the scaling function is shown in Fig.20a for β
as a function of log(g). The scaling function and the Thouless number serve as a basis for
several theoretical works on Anderson localization.34,66,83
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Figure 17 – Scaling function plotted vs the logarithm of the normalized conductance.

Source: Adapted from ABRAHAMS et al.83

Let us now present the Thouless number as it is defined in the localization of light
community34,66

g = δω

∆ω . (5.2)

We have defined the average lifetime as δω−1 = 〈1/γn〉 and the average spacing of nearest
eigenfrequencies as ∆ω = 〈ωn−1 − ωn〉 (〈· · · 〉 corresponding to the average over the modes
n). We remind that eigenvalues are defined as λn = γn + ıωn, see Ch.1.3, where ωn is
the energy shift of mode n and γn is the linewidth of the energy level of mode n, both
normalized by −Γ/2.

The denominator of the Thouless number, ∆ω = 〈ωn+1 − ωn〉 is defined as in (5.1),
as the mean spacing between energy levels. However, the numerator δω−1 =< 1/γn > is
defined as the inverse of the averaged inverse of its original definition. Indeed, the mean of
fluctuation in energy levels might be simply defined as ∆E(L) =< γn >. The definition
used in the optic community gives a strong weight to the subradiant modes, which are
expected to be responsible for Anderson localization.34,66

The dimensionless conductance is hence the ratio between the average of the
inverse decay rates over the mean of the energy shifts spacing. For the microscopic model,
this definition is well established as there are a finite number of modes N . However, as
mentioned in Sec.2.1, the continuous model has an infinite number of eigenvalues that does
not allow the numerical computation of the average. Hence, it is necessary to introduce a
selection rule for the eigenvalues. We already argued about this question in Sec.2.3 and
showed that as n and j increase, eigenvalue λn,j becomes more and more subradiant and
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Figure 18 – Eigenvalues in the complex plane λn = γn + ıωn for the microscopic (blues
crosses) and continuous (red circles) models. Simulation realized with a Gaus-
sian cloud of N = 2000 particles and σ ≈ 12 (b0 ≈ 28.4), at resonance
(δ = 0).

Source: By the author

the decay rate γn,j goes arbitrarily close to zero, as one can see in the inset of Fig.18. We
concluded that selecting modes with n > 1.5k0R was enough to capture the physics. We
need to define here a similar selection rule that does not impact the scaling analysis. First,
we consider a fixed integration step h so the range of the index j is fixed, from 1 to H.
Then, we introduce a cut-off C on the lifetimes, so that we compute all the eigenvalues
that verify γn,j > C. Let us define Nm the final total number of eigenvalues selected. The
scaling analysis is then realized for a given C.

How g behaves with Nm? First, we look at the denominator, ∆ω. As we can
see in the inset of Fig.18, the quantity max(ωn) − min(ωn) will not be modified by
considering higher order modes. Indeed, the maximum and minimum of the energy shift
are reached for low values of n (i.e., the modes with large lifetimes have energies close
to zero). Finally, the denominator of the Thouless number will decrease inversely with
Nm: ∆ω = (max(ωn)−min(ωn))/Nm ∝ 1/Nm. The numerator of g can be developed as
δω = 1/〈1/γn〉 = Nm/

∑Nm
n=0 1/γn. We take a simple example: we add one eigenvalue of

decay rate γNm+1 = 10−5 in the set of eigenvalues, the numerator of δω will increase by
one whereas the denominator will increase by 105. Hence, we clearly see that introducing
more subradiant modes will strongly decrease g. To illustrate the above discussion and
in order to understand the influence of the eigenvalues selection’s rules, we represent,
Fig.19, the Thouless number and scaling function for three different selection’s rules
C = 10−14, 10−10, 10−5: we select all the eigenvalues with γn,j > C. We see that
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decreasing the cut-off, i.e. increasing Nm, translates all the curves (as justified above) but
does not change the slope of g(k0R). Hence, it will not change the phase transition limit.
So, we can consider an arbitrary value of C keeping in mind that the numerical limitations
are of 10−14.

Figure 19 – Scaling function β for the continuous model with a uniform density ρ = N/V .
Blue crosses : C = 10−5, Red crosses: C = 10−10, Green diamond : C = 10−14.
(a) each line represents one fixed density, the dash line is for ρλ3 = 20 where
the transition appears for the microscopic model. (b) the scaling function
for three values of the cutoff. Simulations realized for a particle numbers
N = [100 5000].

Source: By the author

The physical set-up considered in this part is the same than in Part.II except that
we use a uniform density distribution ρ = N/(4

3πR
3) where N is the number of atoms and

R the radius of the sphere. There is no exclusion volume introduced. The curves g(k0R)
are realized by fixing the number of atoms N and by varying the radius of the cloud R.

5.2 Comparison of the two models

In the literature, several studies have been done using the Thouless number and the
scaling function using the microscopic model, showing that it exhibits a phase transition
for scalar light (ρλ3 ∼ 22) and no phase transition with vectorial light.34,47,66 First, we
reproduce in Fig.20a the results found in the literature34 where, for ρλ3 ∼ 22 and a scalar
light model, the slope of g(k0R) was shown to change sign, it is equivalent to β crossing
zero, which is a signature of a localization transition. A similar analysis for the continuous
model and a cut-off of C = 10−10 is presented in Fig.20b. The scaling function β(g) stays
greater than one for all the densities except for two values ρλ3 = 5.104, 105 where the
slope of g(k0R) becomes negative. However, this regime is not relevant for our study:
it corresponds to very small clouds, much smaller than a wavelength k0R � 1, so it
cannot be used to study the thermodynamic regime. We can conclude from Fig.20 that
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the microscopic approach contains a phase transition whereas the continuous approach
does not, in a scalar light approximation. The main difference between the two models is
that the microscopic approach contains disorder where the continuous one does not. Those
results are expected since the disorder is at the origin of the Anderson localization phase
transition.

Moreover, an important point is that the continuous model does not describe
Anderson localization even though it contains subradiance, as we showed in the previous
Part.II. In particular, we have shown that very long lifetime does not imply localization as
it was thought by the community not so long ago. It is an interesting result as it definitely
shows that the long lifetime modes that are responsible for localization are different modes
than the subradiant ones. It is thus important to distinguish the localized modes from
the subradiant modes what is a new concept in the community. In other words, temporal
signatures do not appear to be a proper observable to detect light localization. In the next

(a) Microscopic (b) Continuous, C = 10−14

Figure 20 – g on the two figures above and β(g) on the two figures below. The microscopic
model on the left (a) and the continuous one on the right (b) with a C = 10−14.
I have used a Scalar light and uniform distribution so b0 = 3N/(k0R)2,
C = 10−14 for the continuous model.

Source: By the author

part Part.IV we will however show that fluctuations may be a good observable to probe
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the Anderson localization phase transition.

5.3 Exclusion volume

In this section, we investigate the impact of an exclusion volume on localization in
the microscopic model. Indeed, localization is reached at large densities when pair-physic
mode appear. We want to understand if those pair-physics modes are responsible to the
localization. Moreover, introducing an exclusion volume decreases the disorder of the
system as we introduce more constraints. An exclusion volume 4

3πd
3 is introduced by

implementing the following condition

∀(i, j) k0ri,j > d, (5.3)

where ri,j = |rj− ri| is the distance between atom i and atom j. It minimizes, in particular,
the presence of pairs physics.

We present in Fig.21, the results of simulations realized for a uniform spherical
cloud of radius R, in the localized regime ρλ3 = 40 (or ρ/k3

0 = 0.16). Fig.21a represents
the spectrum λn = γn + ıωn for k0R = 6.67, using four values of the exclusion distance
d = 0, 1, 1.3, 1.5, and for 50 realizations. We observe that increasing the exclusion
volume removes the subradiant eigenvalues in the right tail and the superradiant modes
with negative energy shifts. An interesting observation is that a gap in energy shift (for
subradiant eigenmodes) appears. It is so far only observations and they are not properly
understood.

Then, we do a scaling analysis, Fig.21b, where we represent the Thouless number
g(k0R) as a function of the cloud size for four values of the exclusion volume. We clearly
see that the slope of g increases as d increases. It can be interpreted as a decrease in the
strength of localization. For large d (d = 1.3 and d = 1.5), the slope of g(k0R) stay at
zero and do not become positive. Indeed, for large enough exclusion volume, localized
modes cannot survive as particles in a small volume cannot exist. It is also interesting
that decreasing localization by increasing the exclusion volume makes the slope of g(k0R)
fall on zero whereas it has been shown above that it becomes positive by decreasing the
density.

5.4 Phase Transition Exponent

We have seen in Sec.5.2 the existence of a phase transition in the microscopic
approach for a scalar light model. Now, we are going to characterize this transition by
computing the phase transition exponent as done by Skipetrov et al.66 It is important to
classify the phase transition critical exponents.

We perform the same analysis as in Fig.20a, but focused around the phase transition
ρλ3 ∼ 22 and we show the scaling function Fig.22. The phase transition exponent is
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(a) Spectra for k0R = 6.67. 50 realizations. (b) Thouless number g as a function of k0R.

Figure 21 – Uniform sphere of radius R and density ρλ3 = 40. Four values of the exclusion
volume is represented: k0ri,j > d with d = 0, 1, 1.3, 1.5.

Source: By the author

extracted as follow: we fit the curve β(log(g)) of Fig.22 with a function β(x) = A(x −
xc) + B(x− xc)2 where xc is the phase transition point defined by β(xc) = 0. Then the
critical exponent is defined as ν = 1/A. We obtain ν = 0.95 which is different from the
values found in66 where ν ∈ [1.52, 1.72]. This exponent is useful to classify the kind of
phase transition. As we can see on the figure, the curve is not perfectly smooth, and it has

Figure 22 – Scaling function zoomed on the transition.

Source: By the author

been realized with a low number of realizations (∼ 10) so the errorbar are really important.
It explains the discrepancy with the other value present in the literature. We would need
better statistics to go further in this direction.
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5.5 Conclusion

We have here presented a preliminary work on the Anderson localization phase
transition for light in 3D in atomic media by performing a scaling analysis. We have
recovered the results of the literature showing that there is a localization of light phase
transition for the scalar description of the light. Moreover, we confirmed that the continuous
approach, despite it contains long lifetimes, does not exhibit such a transition as it does
not contain disorder which shows that subradiance is not automatically associated with
localization.



Part IV

Intensity fluctuations for Anderson localization
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6 INTRODUCTION

In the previous chapter, as several theoretical works before,34,47,48,66 we studied the
Anderson localization by performing a scaling analysis,84–86 i.e., we study the eigenvalues
of a coupling matrix (or eigenvalues of a Hamiltonian). It gave interesting contributions
like the absence of localization for a vectorial light model,34,47 the existence of an Anderson
localization for a scalar light34,40,66 and a vectorial light with an intense magnetic field87

and the existence of a phase transition in the (ρλ3, δ)-plane.48,49 Unfortunately, the scaling
function, as well as the participation ratios, are not physical observables so the associated
results cannot be checked. In this part, we show that the intensity fluctuations are an
observable that exhibits the same transition than the AL phase transition.

The light emitted by a random media shined by a laser is a bright subject of research
as the cooperativity gives rise to interesting physics. In the steady-state regime,15,95,96 the
incoherent (off-axis) and coherent (forward direction) transmission are modelled, in absence
of localization, by respectively Ohm’s law for photons and Beer-Lambert law.27,39,62 Ohm’s
law for photons describes the scattering of the light propagating through a random medium
and it is well-described by the radiative transfer equation (RTE)27 in the low-density
regime. Divergence from this law can occur for dense clouds as discussed in Sec.8.1. In
the single scattering regime (b(δ) < 1) the incoherent transmission linearly scales with
b, whereas in the multiple scattering regime (b(δ) > 1), it follows a Lorentzian function
in δ.27 Beer-Lambert law rather describes the diffraction of light by a continuous index
distribution, and is well-described by the continuous model introduced in the first chapter
of this thesis.40 Another manifestation of interferences is observable in the backscattering
direction, where a narrow cone with a maximum intensity, two times greater than the
background appears and it is called CBS (coherent backscattering) or weak localization. It
is a signature of interferences between reciprocal trajectories, which the RTE is not able to
explain as it does not account for interferences, yet the couple-dipole model is. This cone
is stronger in the multi-scattering regime where reciprocal trajectories are more probable
to appear.27,51,97

Yet these static phenomena did not present signatures of Anderson localization.
The community has also been interested in the dynamical case, i.e., the diffuse intensity
in time once the driving laser is switched off, that also reveals interesting physics like
radiation trapping and super- and subradiance. This procedure has been theoretically40

and experimentally used in the dilute regime.7,18,35 Subradiance is related to long lifetime
mode what was first thought to be a signature of localized modes.19,80 It has been shown
that it is, in fact, an interference effect not related to disorder.40 Despite it has been a very
active field, there is no clear measurement of Anderson localization of light up to date. In



88 Chapter 6 Introduction

the Ch.8, we discuss open questions about the observation of AL in the mean intensity.
First, we consider the steady-state regime that contains not understood observations. Then
we discuss a recent theoretical work about long lifetimes in the radiated intensity.88

The most practical step to observe AL in 3D scattering systems is to look at the
mean of the radiated intensity as it was done19,80 as it is the most accessible experimental
observable. However, the transition reported in previous experiments have not convinced
the community as they might be explained by absorption. Finally, so far, none of those
experiments or theoretical works allow concluding on the existence of an AL phase
transition in the mean intensity. It is thus natural to go one step ahead and to investigate
the fluctuations of the intensity. It is an approach equivalent to looking at the first
and second moment of a statistical variable, where the variable is here the far field
intensity in the speckle field. The speckle pattern is produced by the interferences between
coherent waves crossing a disordered medium. It has been investigated since Newton but
attracted again some attention with the invention of the laser. One important result is
that the probability distribution function (PDF) of the speckle follow a Rayleigh law
P (I) = exp(−I) (or Rayleigh distribution), (Goodman, 197598). Later, it was observed a
deviation from the Rayleigh law in transmission and for strongly scattering system.99,100

It led to a competitive theoretical work to explain this non-Rayleigh distribution101–103

and was later expressed as a function of the normalized conductance g. This interesting
result links the intensity statistics to the Thouless number, which is used for the scaling
analysis, and therefore to the quantification of AL through the intensity statistics.90–92

The aim of this work is to exhibit an Anderson localization phase transition in the
statistics of the stationary radiated intensity. We first show that no phase transition is
observed in the mean intensity. Then we bring our attention to the intensity fluctuations
and especially the variance of the intensity and we compute the conductance. We observe
a transition with the detuning-density parameters that we link to an Anderson localization
phase transition by comparing it to existing results like the detuning-density dependency
of the phase transition, the scaling with the conductance, the scaling of the variance-
conductance. Finally, the absence of phase transition for a vectorial light model of the
light is also investigated by introducing a magnetic field.

We present Rayleigh statistics in more details in Sec.9.1. Then we illustrate a
non-Rayleigh distribution in Sec.9.2 and we link it to an Anderson localized regime by
using the parameter g. Finally, we extend this study to a full detuning-density dependence
in the scalar light approximation and the vectorial light model.
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7 INTENSITY STATISTICS

In order to perform the intensity statistics analysis, we consider the same system
as in the previous parts that we solve by using the coupled-dipole model. We study the
interaction between a laser and a cloud of two-level cold atoms. Atoms are characterized
by N � 1 point scatterers of fixed position rj, randomly distributed with density ρ(r),
transition linewidth Γ (also called single atom decay rate), the dipole momentum d and
the normalized Planck constant ~. The medium has a characteristic size L (for instance
the cube side length). The optical set up is illustrated in Fig.23.

As already showed in Sec.1.1.2, the coupled-dipole equation for the atomic dipoles
in the low-intensity regime is:

dβj
dt

=
(
ı∆− Γ

2

)
βj − ı

d

2~Elaser(rj)−
Γ
2
∑
m6=j

exp(ık|rj − rm|)
ık|rj − rm|

βm. (7.1)

The resolution of (7.1) is discussed Sec.1.1.3. In the stationary regime βj reach a constant
values so dβj

dt
= 0 and the equation (7.1) can be solved by inverting an N ×N matrix what

remains time demanding. In order to obtain the best statistics, we perform typically up to
10000 realizations for each set of parameters.

In this chapter, and differently from the plane wave that has been used so far, we
use a monochromatic Gaussian beam, as it is illustrated in Fig.23, the electric field of

Figure 23 – Set up of the system: Gaussian laser beam (Green), atoms (blue spots),
scattered light (green arrows), two-level atoms (in the circle inset) and an
example of the measurement of the intensity in time.

Source: By the author
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which is:

Elaser(X, Y, Z) = E0
W0

Wz

exp
(
−X

2 + Y 2

W 2
z

)
exp

(
ı

(
kZ + k0

X2 + Y 2

2Rz

− φz
))

, (7.2)

with E0 the electric field at the origin, W0 the waist, k = kẑ (k = 2π/ω0) the wavevector,
Wz = W0

√
1 + (Z/zR)2 the spot size parameter, Rz = Z(1 + (zR/Z)2) the radius of

curvature, φz = arctan(Z/zR) the Gouy phase and zR = πW 2
0 /λ the Rayleigh range. We

set a fixed laser field E0 = 1 and we set the laser waist to W0 = L/4. We stay in the linear
regime (keeping a saturation parameter s(∆)� 1). The waist is chosen lower than the
medium size L in order to have most of the laser intensity passing through it. Thus, we
avoid border effects and single scattering introduced on the edge of the medium. Indeed,
P.Weiss and al showed7 that, for a cold atomic cloud, the single scattering ratio is much
larger by using a plane wave as a driving laser than a Gaussian beam with a waist much
smaller than the typical size of the medium. Indeed, the plane wave populates the single
scattering modes that are on the edge of the cloud which a Gaussian beam with W0 � L

does not. It explains that the Anderson localization phase transition presented in this part
has not been recovered by using a plane wave. Indeed, the modes at the edge of the cloud
are not expected to be localized as they exhibit less multiple scattering.
Another element introduced by using a Gaussian beam laser is its divergence angle in the
forward and backward propagating direction that is inversely proportional to the waist
W0 and so forth to L. As we will see later, this forward angle is not appropriate to look
at statistics of the intensity as in this direction the scattered field is mostly coherent
scattering, which suppresses fluctuations. Finally, we have verified that W0 = L/4 is a
good compromise between boundary effects and beam diffraction.

We define the intensity at position r = (r, θ, φ), in spherical coordinates, by
I(r) = 1

2ε0c|Etot(r)|2 = 1
2ε0c|Esc(r) + Elaser(r)|2. Elaser is the laser field defined in (7.2)

and Esc is the scattered field in the far field limit defined in Sec.3.1.

Esc(r) = −~Γ
2d

eıkr

kr

N∑
j=1

e−ıkr̂.rjβj, (7.3)

with r̂ = r/|r| and ~ is the normalized Plank constant and d the transition dipole moment.
Note that in the backward direction (θ > π/2), the Gaussian beam is not considered
when computing the radiated field, as it propagates in the opposite direction. So, we set
Elaser(θ ⊂ [π/2 3π/2]) = 0 in the reflection plane. Moreover, we stay in the far field regime
by computing the intensity at the distance of observation ro = 250L.

We consider as statistic variable the normalized intensity (i.e. divided by its average)
Ĩ = I/〈I〉 where 〈. . .〉 stands for the average over many realizations. In order to produce
different realizations we compute the intensity for either different disorder realizations or
for different values of the azimuthal angle φ. We call disorder realization the measure of
the intensity with a different spatial distribution of the atoms in the cloud and we call
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realization, one measure of the intensity. The physics like multiple or single scattering
depend on θ so we work at a fixed polar angle. Hence, realizations can be performed over
the disorder and/or over the azimuthal angle φ, which will be discussed in Sec.9.6.
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8 MEAN INTENSITY

Before moving to the intensity statistics study, we here look at the mean intensity.
If the mean intensity contains signs of localization it might not be necessary to look at the
fluctuations as the mean intensity is easier to experimentally measure. We presented in the
introduction of this part the experiments that searched, without success, for AL through
the mean intensity. A recent theoretical work88 suggests that we can monitor the trapping
of light by observing the long-time decay of the fluorescence. This result is discussed in
Sec.8.2. In Sec.8.1, we comment on divergence from Ohm’s law at high densities.

8.1 Stationary regime

Let us first look at the incoherent transmitted intensity. In the thesis of T. Rouabah42

and Ref.,39 the transmission through a uniformly distributed sphere illuminated by a
Gaussian laser was studied numerically. It was shown that Ohm’s law is well-described
by the RTE or a random walk model that ignore coherences and interferences. However,
when using the coupled-dipole model, a divergence from the Ohm’s law was observed at
large densities. It is not explained but the relative increase of the diffuse transmission
as compared to Ohm’s law is not consistent with a decrease of the diffusion coefficient
as would be expected from Anderson localization. We have recovered the same kind of
behaviour for a cubic cloud, see in Fig.24. In our simulations as well as in T. Rouabah’s,
this effect appears independently on the detuning and also on resonance, which suggests
that it is not an AL effect.

8.2 Subradiance rate

A recent theoretical work88 showed a different behaviour of the long lifetime of the
intensity in the two regimes (localized and non-localized), which was explained as light
trapping. However, the authors do not work at a fixed resonant optical thickness so this
effect might be explained by subradiance7,40 that linearly scales with b0,18 rather than
localization. In order to go further in this discussion, we look at the behaviour of the mean
intensity in time 〈I(t)〉/〈I(t)〉t=0 as a function of the density. The mean is here performed
by computing I(t) for different disorder realizations, so 〈I(t)〉 is a function of time. We
charge the system by turning on the laser for a long time (50Γ−1), and we monitor the
diffuse intensity when the laser is switched off at t = 0. It is the same procedure as in
Part.II that has been intensively studied in the dilute regime. In Fig.25, we plot the
subradiant rate τsub computed by fitting the curve log (〈I(t)〉/〈I(t)〉t=0) = A0 − (1/τsub)tΓ
on a time-window that refers to 〈I(t)〉/〈I(t)〉t=0 ∈ [10−2 10−4]. Despite large fluctuations,
we recover that the subradiant rate remains constant for fixed b0 and such for the two
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Figure 24 – Mean transmitted intensity in the stationary regime as a function of the
optical thickness, for different number of atoms N and detuning δ. The arrow
indicates the direction where the density increases while staying on the same
curve. The geometry of the cloud is a uniform cube of side length L driven
by a Gaussian laser with waist W0 = L/4. The intensity I = |Esc + Elaser|2 is
computed in direction (ro = 250L, θ = π/6) and averaged over 40 realizations.

Source: By the author

regimes: non-localized (low density) and localized (large density). Moreover, the value
at the origin of the linear regression A0 is constant, whereas the variance increases. It
shows that looking at the long lifetime behaviour of the radiated intensity is not enough
to exhibit a transition.

8.3 Conclusion

In this chapter, we have focused our attention on the subradiant rate in order to
show that there is, so far, no proof of an AL phase transition in the mean intensity. It
justifies going further in the statistical study of the intensity which means looking at the
fluctuations.



8.3 Conclusion 95

Figure 25 – Subradiant slope fitting as a function of the density. Atoms are uniformly dis-
tributed in a cube of side length L. Intensity is computed over 100 realizations
in direction ro where ro = 250L, θo = 75◦ and φ = 0. We use a Gaussian laser
with waist W0 = L/4 and detuning δ = 0.83 and the optical thickness is fixed
at b0 = 20. A0 (red squares dashed line) is shown in arbitrary units and the
subradiant rate (blue circles and full line) is computed for t = [40 100]Γ−1.

Source: By the author
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9 INTENSITY FLUCTUATIONS

We saw in the previous chapter Ch.8 that no signature of phase transition related
to Anderson localization has been found in the mean intensity. Hence, one may choose to
study the intensity fluctuations, where the first moment would correspond to the variance.
The variance measures how far a statistical variable spreads out from its average values.
In our case, the variable is the steady-state diffused intensity and the variance describes
its fluctuations from one realization to the other. The intensity fluctuations have been
and still are a subject of interest. It is mainly studied, experimentally, through which is
called the speckle that can, for instance, provide information about the nature of the light
source (spatial and temporal coherence) by computing the autocorrelation function. In
this chapter, we study the statistical properties (PDF, variance) of the far-field intensity
in order to exhibit a transition. Then we relate this transition to the Anderson localization
phase transition by comparing it with already published results.

First, we present the Rayleigh distribution of the speckle statistics and we present
theoretical work about the non-Rayleigh statistics done in the 90’s. We discuss the PDF
of the intensity in the three regimes: the dilute, the localized and the deeply localized
regime, and we extract the conductance from those PDFs. Then we investigate the best
θ-direction (transmission, reflection) to observe non-Rayleigh statistics. We perform a
2D (δ, ρλ3) mapping of the phase transition. We look at the scaling of this transition, we
investigate the influence of the azimuthal angle and we use a vectorial model of the light
to study the influence of a magnetic field.

9.1 Speckle: Rayleigh and non-Rayleigh statistics

9.1.1 Normal Speckle

When one shines at fixed disordered media like paint with a coherent source, the
diffused light draws a random pattern as shown in Fig.26. This pattern is a consequence
of the disorder inside the media. It is a result of interferences between all possible paths
of the light through it. For instance, the speckle pattern has a characteristic grain size
that is related to the characteristic size of the medium L. A statistical analysis of the
speckle pattern can be performed in space by integrating the total diffused intensity over
all directions or in time by measuring I(t) in one direction. It is subject to theoretical and
experimental work94,98,104–106 and allows to predict the intensity probability distribution
and the autocorrelation function. It has been established that the intensity statistics
follow a Rayleigh distribution107 of the form P (I) = 1

〈I〉e
(−I/〈I〉) that was experimentally

observed.90,99,108 This result can be mathematically derived by considering all the possible
paths that a photon can take inside a random medium between an incoming and outgoing
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Figure 26 – Speckle pattern.

Source: Available from: <https://en.wikipedia.org/wiki/Speckle_pattern>. Accessible at:
14 March 2019.

direction and by doing the following hypothesis:

• Phases are uniformly distributed in [−π π].

• For a given path, phases and amplitudes are unrelated random variables.

• For two different paths, phases and amplitudes are independent random variables.

and using statistical properties such as the central limit theorem. One example of the
Rayleigh distribution is illustrated in Fig.27 for the normalized intensity Ĩ = I/〈I〉. In the
semilog representation, we clearly recover the exponential distribution, as the parameters
are chosen in the dilute regime, ρλ3 = 5 < 20.

Those properties for a normal speckle (for independent scatterers, for example)
are well established, theoretically and experimentally94,98 in the regime where g → ∞
where there are no correlations between intensities. The parameter g is the dimensionless
conductance.83,85,86 Multiple scattering is thus not essential. The statistical study of the
intensity is performed by looking at the first and second moments. The first moment is
simply the mean intensity 〈I〉 that has been investigated in the previous section, Sec.8.
Then our attention goes to the second moment, that is, the variance of the normalized
intensity var(Ĩ) = σ2

Ĩ
= 〈

(
Ĩ − 〈Ĩ〉

)2
〉 = 〈I2〉/〈I〉2 − 1 (= g(2)(0)− 1)83 where Ĩ = I/〈I〉.

The relation between the variance and the autocorrelation function g(2)(0) is interesting
from an experimental point of view as it can be measured experimentally.109 We remark
that for a normalized exponential probability distribution the variance is one. Thus, one
signature of the divergence from Rayleigh statistics is the variance deviating from unity.
Indeed, if the variance diverges from one it means that the PDF of the intensity is not
exponential. The variance may describe the fluctuations of the intensity which we expect to
increase at the phase transition due to the appearance of localized modes. Even though it
allows to distinguish Rayleigh from non-Rayleigh statistics, the variance does not describe



9.1 Speckle: Rayleigh and non-Rayleigh statistics 99

Figure 27 – PDF of the radiated normalized intensity of N = 684 atoms uniformly dis-
tributed in a cube of side length L with a density ρλ3 = 5, b0 = 8.2 and δ = 0.
Intensity is computed in direction ro where ro = 250L, θo = 75◦ and φ = 0.
We use a Gaussian laser with waist W0 = L/4. Statistics are done over 10 000
realizations. Blue filled circles are for simulations and the black dashed line
refers to an exponential distribution.

Source: By the author

all the information contained in the pdf. The aim of this part is to study how the Rayleigh
distribution is modified through the Anderson localization phase transition.

9.1.2 Non-Rayleigh statistics

In a series of papers76,83,89–94,99,110 , an approach was proposed to show how
intensity statistics can deviate from Rayleigh’s law. It consists of considering the Feynman
trajectories to compute all the moments 〈In〉 and thus recover the PDF. Hence, the Rayleigh
law is obtained with the ladder diagrams111 by summing the contributions of all the non-
correlated paths of a wave propagating in a disordered medium and 〈In〉 = n!〈I〉n. However,
there are other additional terms that are more difficult to observe and that take into
account trajectories with one or more crossings. The probability of higher-order crossings
have a no-negligible contribution and 〈In〉 = f(n)〈I〉n where the function f is discussed
in reference.101 This approach has been intensively studied in the 90’s theoretically,
numerically and experimentally, after the observation of a non-Rayleigh distribution
in 1989.99 An intense analytical work tried to model this observation. Computing the
moment distribution of the intensity probability distribution of the transmitted waves
propagating in a disordered medium was first introduced by Shnerb et al. in 1991.101 He
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distinguised bettween the transmission and the reflection and gave an analytical expression
of the PDF of the transmitted intensity that depends on the conductance g and the
transmission coefficient T in the regime where multiply-crossing Feynman trajectories can
be neglected (only one crossing is considered). This initial work was followed by intense
discussions76,83,89–94,99,110 and lead to the general expression of (9.1) that is valid for all
values of g.

p(Ĩ) =
∫ ı∞

−ı∞

d x

πı
K0(2

√
−Ĩx) exp(−Φcon(x))], (9.1)

K0 is the modified Bessel function and the function Φcon has a different expression
depending on the beam profile, plane wave or Gaussian beam. For a Gaussian beam:

Φcon(x) = g
∫ 1

0

d y

y
log

(√
1 + xy

g
+
√
xy

g

)
, (9.2)

where g is the dimensionless conductance.83,85,86 In the large g and low Ĩ approximation,
and for a plane wave, the equation (9.1) leads to the following expression: (9.3), which
will be used only for specific cases mentioned later.

p(Ĩ) = e−Ĩ
[
1 + 1

3g
(
Ĩ2 − 4Ĩ + 2

)]
. (9.3)

It shows that the intensity distribution in any direction depends only on one parameter
g. g is inversely proportional to the crossing probability of two Feynman trajectories for
transmission and to the probability to return to the same channel in reflection. 1/g can
also be interpreted as the probability for two channels to interfere. Close to Anderson
localization g approaches unity and fluctuations increase. Fitting the PDF with expression
(9.3) gives access to the value of g. This approach is quite interesting since the conductance
is usually used to distinguish the localized from the dilute regime and to exhibit a phase
transition by performing a scaling analysis, as was done in Part.III. Indeed, in 3D, the
non-localized regime refers to g →∞, and the localized regime refers to g → 0.

Finally, performing the study of the intensity statistics allows us to compute the
variance and the conductance, which are two parameters issued from different approaches
that we will use to study the Anderson localization phase transition.

9.2 Phase transition histograms

In the previous section, we saw that the variance is a good parameter to study
the intensity statistics and we know99,100 that a non-Rayleigh distribution can appear
in the multiple scattering regime. In order to go further in the understanding of the
intensity statistics at the phase transition, we illustrate in Fig.28 the PDF of the intensity.
As expected, the PDF (blue points) diverges from an exponential distribution (black
dashed line), and it is characterized by a variance much greater than one: σ2

Ĩ
= 6.85. The

conductance is computing by fitting the filled blue dots with (9.1) and (9.2) and provides
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Figure 28 – PDF of the radiated normalized intensity of N = 6066 atoms uniformly
distributed in a cube of side length L with detuning δ = 1, density ρλ3 = 44.
Intensity is computed in direction ro where ro = 250L, φ = 0 and θ = 75◦.
We use a Gaussian laser with waist W0 = L/4. Statistics is done over 10 000
realizations. Blues points represent the PDF for the data, black dash lines is
the PDF for an exponential distribution and the long-dashed line is a fitting
of (9.3). σ2

Ĩ
= 6.85 and g = 0.058 and errorbar of [0.0578, 0.0583] with a

binning of 20.

Source: By the author

the value g = 0.058 (and 95% confidence of [0.0578, 0.0583]). Note that the histogram
depends on the binning and so it impacts the computation of the variance by a fit.

We now consider a system more localized, i.e., with a larger density, in order to
study how the intensity statistic behaves in the deep localized regime. We show in Fig.29,
the PDF for a density of ρλ3 = 38 and a detuning of δ = 0.5. The variance is σ2

Ĩ
= 1.16

and the conductance is g = 12.1. Surprisingly, those values are similar to those in the
non-localized regime. The PDF follows an exponentials law for low intensities Ĩ < 8 but
seems to diverge from it for large values Ĩ > 8, which is not captured by neither the
variance nor the conductance. It is not so surprising that the variance changes of behaviour
only at the transition and remains stable in the deep-localized and non-localized regimes. It
is a similar behaviour than other phase transitions like the susceptibility in ferromagnetic
medium.112
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Figure 29 – PDF of the radiated normalized intensity forN = 5204 atoms uniformly
distributed in a cube of side length L with a detuning δ = 0.5 and ρλ3 = 38.
Intensity is computed in direction ro where ro = 250L, φ = 0. We use a
Gaussian laser with waistW0 = L/4. Statistics are done over 5 000 realizations.
Black dash lines is for an exponential distribution and red dash lines is for
the fitting with (9.3). Variance is var = 1.16 and conductance is g = 12.0747
with errorbar of [10.4368, 13.7126].

Source: By the author

9.3 Direction of observation

In this section, we investigate the optima direction to observe the non-Rayleigh
distribution. Indeed, (9.1) is independent on the direction. Nevertheless, a wide range
of physical phenomena interfere with the interpretations depending on the direction of
observation: CBS, Ohm’s law, Beer-lambert law, etc. The azimuthal angle φ is not treated
here and it stays equal to zero but it is discussed in Sec.9.6. We study the intensity
statistics in direction θ = [0 π] for two sets of parameters that refer to the dilute regime,
ρλ3 = 5 and the phase transition regime, ρλ3 = 44.3. The phase transition parameters are
chosen in accordance with the recent results of reference.48 In Fig.30, we show the variance
as a function of the θ-angle for those two regimes. We remind that the total intensity is
computed as I = 1

2ε0c|Esc(r) + Elaser(r)|2 where Elaser is set to zero in reflection and the
statistical variable is Ĩ = I/〈I〉.

First, let us focus on the forward lobe where the variance oscillates (θ ≈ 0). In this
direction, the intensity is driven by the Mie-scattering theory where the scattered field
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synchronizes with the incident laser. While the laser field is constant it explains that the
total intensity tends toward a constant and the variance drops to zero. To justify it, we
have superposed the variance with the mean intensity (thin lines) to illustrate that the
oscillations of the variance perfectly coincide with the oscillations of the mean intensity
that have been shown to be the Mie-scattering resonances.40 The forward lobe is not
interesting for our study as it is driven by the Mie scattering theory which is not a disorder
effect40 but due to diffraction. Following the Mie-scattering theory, the forward lobe angle
is inversely proportional to the typical size of the cloud (∝ 1/(k0L)). In order to minimize
the forward lobe extension we work with an as large L as possible and we verify, for all
results presented here, that we are not in this lobe.

We now turn our attention to the backward lobe where we observe a drop in the
variance (it also exists for the blue curve but less significantly what explains that we do
not see it on the figure). The abrupt change of density at the surface introduces a change
in the refractive index. Due to the change of the index a substantial part of the incoming
laser field is reflected. This fraction of the intensity is constant and independent on the
disorder realization so it lowers the fluctuations. The larger the change in density, the
larger the index change and the more of the field will be reflected. It explains that in
Fig.30, the drop of the variance is more important for higher densities. This effect could
be minimized by introducing an angle between the laser field propagation direction and
the medium surface or by using a curved surface of the medium like a sphere.

If we exclude those two regimes we see that the dilute regime presents a variance
equal to one which is a consequence of an exponential probability distribution of the
intensity as we see in Fig.27 for the angle θ = 75◦. Finally, the interesting part is about
the phase transition regime (red dashed lines) where the variance significantly increases in
the transmission plane which results from a break of the exponential PDF of the intensity.
It is an important result as it shows that the apparition of Anderson localized modes at
the phase transition changes the intensity statistics. As the intensity is relatively accessible
experimentally, this result shows that doing statistics of the intensity over many disorder
realizations may be an effective way to experimental observe the Anderson localization
transition of light in a disordered medium. Mapping the variance as a function of the
density and the detuning is done in Sec.9.4 and allows to exhibit a phase transition between
a dilute and a localized regime. An interesting question is how the variance (and the
conductance) behaves through the transition and it scales. Finally, we see that the variance
in the reflection plane is one and the PDF of the intensity is an exponential even in the
localized regime. Indeed, the reflected intensity is more sensitive to surface modes that are
single scattering modes so they are less probably localized. It is an equivalent discussion
than the one done in the introduction about the difference between a plane wave and
a Gaussian laser.7 As the results of this discussion, in the following of this part, we use
the variance (and the conductance) to study intensity distribution and we look in the
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Figure 30 – Variance as a function of the angle θ for atoms uniformly distributed in a cube
of side length L with a detuning δ = 1. Blue curves are for a density ρλ3 = 5,
N = 684 atoms and the red curves are for a density ρλ3 = 44, N = 6066
atoms. Intensity is computed in direction ro where ro = 250L, φ = 0 and the
laser field is set to zero in the reflection plane. We use a Gaussian laser with
waist W0 = L/4. Statistics are done over 10 000 realizations. Dash lines are
for the mean intensity 〈I〉.

Source: By the author

transmission plane outside the forward lobe (usually θ = 75◦).

9.4 Phase transition mapping

Since the localized modes typically have their energy in a given range, it is interesting
to study the dependence of the variance on both density and laser detuning. We perform
this study for two cases: a uniformly distributed cube of fixed side length k0L = 32.4
(Fig.31a) and a uniformly distributed cylinder with a fixed number of atoms N = 2000
(Fig.31b). We clearly observe a phase transition that divides two regimes: the dilute regime
where σ2

Ĩ
= 1 and g → ∞ and the localized regime where the variance increases and

the conductance falls to one. The signatures of localization rise in the same area for the
four figures (δ ≈ 1, ρλ3 ≈ 20). It is realized for two different geometries and setups (N
or k0L fixed) but they show the same results, which suggests that this transition is a
universal density-detuning effect.48 Then finding the same phase transition using two
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(a) Atoms are distributed in a cube of fixed side length k0L = 32.4. Statistics are done over 800
realizations.

(b) The cloud is a cylinder of radius L and length L with a fixed N = 2000. Statistics are done
over 1000 realizations and 360 values of φ uniformly distributed between 0 and 2π.

Figure 31 – Variance and conductance as a function of the density and the detuning.
Atoms are uniformly distributed. Intensity is computed in direction ro where
ro = 250L, θo = 75◦. We use a Gaussian laser with waist W0 = L/4.

Source: By the author

different approaches (variance and conductance) is a strong argument to validate these
results, and once more points at the conductance being a suitable signature of localization.
Finally, the two regimes area are consistent with existing results that showed that the AL
phase transition is a density effect that rises at ρλ3 ∼ 2266 and it fits recent work that
pointed out that the AL phase transition is asymmetric in δ48 and does not appear for
negative detuning.

This work allows finding the phase transition between the dilute and the localized
regimes but not to identify whether a specific set of parameter (δ, ρλ3) corresponds to a
localized one since in the deep localized regime the variance and the conductance present
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Figure 32 – Variance and conductance as a function of the density. Atoms are uniformly
distributed in a cylinder of radius and length L. We use a Gaussian laser with
waist W0 = L/4. Intensity is computed in direction (ro, θ, φ) where ro = 250L
and θo = 75◦. The detuning is δ = 0.6 and we consider N = 3000 atoms so
the density is ρ = N/(π/4L3). Statistics are done over 3600 values of φ that
are uniformly distributed in [0 2π] and 1 000 realization over the disorder.

Source: By the author

similar values as in the dilute regime.

9.5 Phase transition scaling

Since we have identified a phase transition using the variance and the conductance,
we here characterise the scaling of those parameters through the transition. To do so, we
perform a cut at constant detuning δ = 0.5 for a cylinder of radius R = L/2 and length L,
using a Gaussian incident beam with waist W0 = L/4 and observing in direction ro with
ro = 250L and θ = 75◦. We draw in Fig.32 the variance and the conductance as a function
of the density. We observe, as expected from the previous section, that the divergence
from one of the variance coincide with a drop of the conductance. It has been shown21

(p446) that the variance and the conductance are linked, in a wave-guide of M channels,
by σ2

Ĩ
− 1 = 1/M2 + 4/(3Mg) + 2/(15g2). In the regime where g � 1 this expression is

simplified by log(σ2
Ĩ
− 1) ∝ −2 log(g). We apply this formula to our system by representing

in Fig.33 the variance as a function of the conductance in loglog scale. We see that the
scaling is well reproduced, which allows to confirm the behaviour of the conductance at
the transition. It is another interesting results as it is consistent with the scaling admitted
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Figure 33 – Variance as function of the conductance. Figure realized with data of Fig.32,
The black dashed line represent log

(
σ2
Ĩ
− 1

)
= −2 log (g).

Source: By the author

by the community.

The results presented Sec.9.4 about the δ − ρλ3 dependence of the transition and
the scaling of the variance as a function of the conductance are two strong arguments to
justify that the transition observed in the is related to the Anderson localization phase
transition.

9.6 Azimuthal angle

In this section, we discuss the role of the azimuthal angle φ on the intensity statistics.
The two questions we address are: does the variance depends on φ for a z-axis symmetric
cloud? Can we observe the Anderson localization on only one disorder realization, using
the fluctuations in the φ-direction? Due to the z-axis symmetry of the cloud, we expect
that the azimuthal angle is not relevant for the statistics. The second question will give
us information about the nature of the observable that is the intensity, i.e., we will learn
about, for instance, whether it is a self-averaging variable.

In order to work with a cloud with a rotational symmetry around the z-axis, we
consider a cylinder of radius R = L/2 and length L. As usual, we use a Gaussian incident
beam with waist W0 = L/4, we observe at a distance ro = 250L and an angle θ = 75◦

as justified above. We use the same data as in Fig.32. We remind that we call disorder
realization the measure of the intensity for the same parameters but a different spatial
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Figure 34 – Variance as a function of the azimuthal angle. Atoms are uniformly distributed
in a cylinder of radius and length L. We use a Gaussian laser with waist
W0 = L/4. Intensity is computed in direction (ro, θ, φ) where ro = 250L and
θo = 75◦. The detuning is δ = 0.6 and we consider N = 3000 atoms so the
density is ρ = N/(π/4L3). Statistics are done over 1000 realizations for the
lines and 100 realizations for dashed lines. Blue curves refer to the dilute
regime of density ρλ3 = 5 and red curves refer to the phase transition regime
of density ρλ3 = 26.5.

Source: By the author

distribution of the atoms in the cloud.

Let us answer the first question. As the cloud is z-axis symmetric, we do not expect a
change of the intensity statistics behaviour at fixed (ro,θ) by changing the azimuthal angle.
To illustrate this point, we plot in Fig.34 the variance in direction (θ = 75◦, ro = 250L) as
a function of the azimuthal angle φ and for one localized and one dilute regime. The most
intuitive remark is that for both densities, the localized regime stays localized (σ2

Ĩ
� 1)

and the dilute regime stays non-localized (σ2
Ĩ
≈ 1) independently of φ despite small

fluctuations. Moreover, increasing the statistics by increasing the number of disorder
realizations decreases the height of the fluctuations but does not change the number of
oscillations in the interval [0, 2π]. The number of peaks is more or less the number of
non-redundant φ-values that we can be used to improve the statistics for a unique disorder
realization. This number is limited by the speckle grain size and is proportional to k0L.
The next question is: is this number large enough to produce good statistics and to observe
a transition?
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In order to answer the second question, we compute the intensity for one disorder
realization, in direction (ro, θ), and for a set of values of φ ⊂ [0, 2π]. Still, the number
of φ that is physically relevant is limited by the speckle grain size that is on the order
of the normalized cloud size k0L. So, in order to extract the maximum of information,
it is important to choose more than k0L values of φ that are uniformly distributed in
the interval [0 2π]. It is clear that choosing much more values of φ than needed will not
change the statistic study. This constraint is a limitation at large densities where the cloud
size decreases and so does the number of speckle grains. One solution we here apply is to
average the variance over many disorder realizations. We proceed as follow: intensity is
computed for a single disorder realization but using many values of φ, then the variance is
computed from these data. Then we repeat this procedure for many disorder realizations
and we average the variance computed. The final variance is obtained through statistics
on φ and not on the disorder. The result is depicted in Fig.35a the variance as a function
of the density where the variance is computed with the above procedure for two cases:
one and 1 000 disorder realizations. For the red curve, we have limited statistics and the
results are unclear. But, the blue dashed curve shows a smooth increase of the variance at
the phase transition which is confirmed in Fig.35b where we rescale and superpose it to
the variance computed with two other methods. The red dash line of Fig.35b refers to the
usual variance computed in direction φ = 0 and over disorder realizations. The yellow line
is a combination of the two other methods.

The generalization of the above discussion and specifically the Fig.35b is shown in
Fig.36 where the equivalent of Fig31a is shown but computing the variance with statistics
on φ. We clearly see that it exhibits the same phase transition as in Sec.9.4. The important
result of this section is that the phase transition can be observed using a single disorder
realization.

9.7 Vectorial description of light

One more study that can be done to confirm that the transition shown by the
intensity statistics is an Anderson localization phase transition is to perform the same
work as in Sec.9.4 using a vectorial description of the light. Theoretical results showed that
the vectorial behaviour of light, and the near-field terms that come with it, suppresses
localization.47 In Fig.37, we show the equivalent of that in Fig.31a but for vectorial light
and introducing a strong magnetic field, ∆B = µBgmB/~ is the frequency shift due to
applied magnetic field where µB is the Bohr magneton, g the Lande factor, m the Zeeman
substate and B a magnetic field. First, we see that, as expected, no transition appears in
Fig.37a as the vectorial behaviour of light is considered and no magnetic field is apply
which has already been shown through a scaling analysis.47 However, when a large magnetic
field is apply, a phase transition exists on the m = ±1 Zeeman levels49,87 what we see in
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(a) Variance computed with 3600 values of φ that are uniformly distributed in [0 π] and for one
disorder realization, red line. For the blue dashed line, the variance is then averaged over
1 000 disorder realizations.

(b) The blue dashed curve is the same as the blue dashed line of Fig.35a [a.u], the red dashed
line is for the variance computed for 1000 disorder realizations at φ = 0 and the yellow line
is the same as the red dashed line but averaged over 3600 values of φ.

Figure 35 – Variance as a function of the density for a cloud of atoms uniformly distributed
in a cylinder of radius and length L. We use a Gaussian laser with waist
W0 = L/4. Intensity is computed in direction (ro, θ, φ) where ro = 250L
and θo = 75◦. The detuning is δ = 0.6 and we consider N = 3000 atoms so
the density is ρ = N/(π/4L3). We use 3600 values of φ that are uniformly
distributed in [0 2π] and 1 000 realizations over the disorder.

Source: By the author
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Figure 36 – 3D representation of the variance as a function of the density and the detuning
for a cloud of a fixed number of atom N = 2000 uniformly distributed in a
cylinder of radius L and length L. Statistics of the intensity are computed in
direction ro where ro = 250L, θo = 75◦ for 1000 realizations and 360 values
of φ uniformly distributed between 0 and 2π. We use a Gaussian laser with
waist W0 = L/4. For each realization, a variance is computed with the 360
values of φ then the final variance is computed by the average of the 1000
previously computed variances.

Source: By the author

Fig.37c and Fig.37d. It is one more argument that linked the transition we observe through
the intensity fluctuations to the AL phase transition of the scaling analysis. We have found
the same results for simulations at fixed number of atoms. The figures presented in this
section have been done by the PhD student Ana Cipriš.



112 Chapter 9 Intensity fluctuations

(a) Vectorial light and ∆B = 0. (b) Vectorial light ∆B = 0, m = 0.

(c) Vectorial light ∆B = 1000Γ and m =
−1.

(d) Vectorial light ∆B = 1000Γ and m =
+1.

Figure 37 – 3D representation of the variance as a function of the density and the detuning
for a cloud of atoms uniformly distributed in a cylinder of side length L and
radius L/2 with a fixed k0L = 21.5. Intensity is computed in directions ro
where ro = 250L, θ = 75◦. We use a Gaussian laser with waist W0 = L/4.
Statistics are done over 400 realizations and 51 values of φ. The full vectorial
model is considered (a) in absence of magnetic field, and (b–d) with a strong
magnetic field B = Bẑ. The energy shift between the sublevels is ∆B = 1000Γ.

Source: Provided by Ana Cipriš.
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10 CONCLUSION

We have first shown that the incoherent transmitted intensity in the steady-state
and the subradiant rate do not change at the Anderson localization phase transition,
so they are not proper observables to detect the localization transition. Then we have
shown that a non-Rayleigh distribution of the incoherent transmitted intensity rises at the
Anderson localized phase transition by looking at the PDF of the intensity, the variance and
the conductance. In order to link this observation to an effective signature of an Anderson
localization phase transition, we compared it with existing results on the subject. First,
we saw a clear transition on the variance that depends on the density and the detuning.
This transition line is in agreement with recent results of48 obtained by a scaling analysis.
We also showed that the localized regime exhibited by the study of the variance coincides
with a conductance falling to zero whereas the dilute regime area has a conductance going
to infinity, which matches with the interpretation of the conductance.83 We also recover
the scaling of the variance as a function of the conductance. The last test consisted in
considering a vectorial model of light. We recovered that there is no phase transition
with the vectorial light in absence of magnetic field, as shown in.87 Finally, we found that
introducing a strong magnetic field makes the phase transition re-appear again in the
same (δ, ρλ3)-range as published in reference.49 All those tests confirm that the transition
observed in the study of the incoherent transmitted intensity fluctuations is an Anderson
localization phase transition. It is an interesting result as it provides an experimental
observable to detect the Anderson localization of light in 3D.

Experimentally, the intensity can be continuously measured while the atoms are
moving due to the finite temperature of the cloud. Two measurements of the intensity at a
large time difference can be considered as two independent realizations because the atoms
have moved enough. Thus measuring experimentally the autocorrelation function g(2)(τ)
from the detection of the intensity I(t) over a long time will provide the variance. Indeed,
the autocorrelation function at τ = 0 can be linked to the variance with g(2)(0) = σ2

Ĩ
− 1.

This relation is interesting as it makes the connection between the full study done in this
part with the variance and an experimental observable.109 In Fig.38, we present a curve
g(2)(0) as a function of the detuning for a dense cloud and a scalar description of the light,
obtained from numerical simulations of a cloud with atoms in motion. The realization of
this figure took 10 days of simulations and we would need more time to get better statistics.
The main message of this figure is that for a negative detuning g(2)(0) ≈ 2 whereas the
fluctuations significantly increase for a positive detuning. It is a similar transition than
what was observed in Fig.31b.
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Figure 38 – Autocorrelation function with the detuning for an atomic cloud of N = 500
particles with a density of ρλ3 = 49.61 and a temperature of T = 10−8K.
Intensity is computed for 2.10−3 seconds and the autocorrelation function
g(2)(0) is computed for a time step of dt = 4.10−8 seconds.

Source: By Dr. Romain Bachelard

Another method to introduced disorder in the system has been recently proposed20

and is based on the original work of P.W.Anderson that consists in considering a diagonal
disorder. Preliminary work is presented in the following Part.V where we use an approach
similar to that developed in this Part.IV.



Part V

Diagonal disorder for Anderson localization
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11 INTRODUCTION

We explored in Part.IV and Ch.5.5 the Anderson localization transition by tuning
the strength of disorder through the density. This approach requires to reach high densities,
which is experimentally hard to achieve and where other physical phenomena like collisions
are not negligible. Moreover, in the experiment, atoms are not perfect two-levels atoms, and
the temperature is not zero. In this part, we investigate another way to introduce disorder
in the system. Indeed, in the original work of P.W. Anderson on electronic transport, the
disorder was managed by the strength of the random potential applied on each site of a
lattice. If we draw a parallel with our system, the propagation of light in a cloud of cold
atoms, the random potential refers to diagonal disorder. It consists of adding a random
perturbation in the detuning between the atomic transition and the laser frequency. It
is equivalent to adding a random term in the diagonal of the coupling matrix D; ergo
the name of the diagonal disorder. It opposes the off-diagonal disorder that refers to
the disorder resulting from the random distribution of the atoms. One advantage and
interest of this method is that one does not need to work at high densities to reach a
strongly disordered system. Nevertheless, it modifies the physical interpretation of global
parameters such as the mean free path and the optical thickness. Indeed, when introducing
a diagonal disorder, every atom detuned differently from the laser and also has a different
cross section. An important question is about the physics introduced by the diagonal
disorder. Are the effects equivalent to driving the atoms far from resonance? Or can the
diagonal disorder lead to Anderson localization?

It has been shown, in 1D and 3D,113 for an Anderson lattice model coupled to a
common decay channel, that, due to diagonal disorder, subradiant states become hybrid,
meaning they become localized and extended, whereas superradiant states are extended.
It justifies that one looks for Anderson localization in presence of diagonal disorder in
the long lifetime modes.113–116 Another work, recently proposed20 that increasing the
diagonal disorder strength is a way to reach the localized regime even at low densities.
The participation ratio (PR) of a precise selection of subradiant modes was studied and
an abrupt change of the mean PR was observed at a given diagonal disorder which was
explained as a signature of a localization transition. This method to reach the localized
regime is not in contradiction with the density approach but it is fundamentally different.
The question we try to answer in this part is about the diagonal disorder as a way to
reach the localized regime. The parallel between the results of this chapter and the paper20

should give strong motivations to continue in this direction. Indeed, we observed a similar
transition by using two different approaches, a study of the PR and the intensity statistics
fluctuations. As we did in the previous Part.IV we investigate the fluctuations of the
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transmitted intensity and more precisely, the variance of the normalized radiated intensity
while increasing the diagonal disorder. In order to observe the same transition as in,20 we
use the same parameters. The goal is to see if we recover the same transition as in20 in
the variance of the intensity statistics, like for instance, the scaling in W/b0 of the phase
transition.

Like in the three previous chapters, we study the interaction between a laser and a
cloud of two-level cold atoms. Atoms are characterized by N � 1 point scatterers of fixed
position rj, randomly distributed with density ρ(r), transition linewidth Γ (also called
single atom decay rate) and frequency ωa and Rabi-frequency is Ω� Γ. The medium has
a characteristic size L (for instance, the cube side length). The laser is a Gaussian beam
of waist W0 = L/4 as justified in the previous part, we use the coupled-dipole model, and
the intensity is defined as in the previous part. The optical setup is illustrated in Fig.23.
Concretely, the diagonal disorder is introduced as follows: for every atom a of the cloud,
the detuning of this atom δa = (ω0 − ωa) Γ is replaced by δa +Wa where Wa is a random
number in [−W/2, +W2] andW is the strength of the diagonal disorder and can simply be
called diagonal disorder. Numerically, we generate N random numbers Wi in the interval
[−W/2, +W/2] and we replace the coupling matrix D defined in Sec.1.1 of Part.II by
D → D−ıINWd, where IN is the identity matrix of size N×N andWd = (W1,W2, · · ·WN ).
The name of diagonal disorder comes from the fact that we add a term on the diagonal
of the coupling matrix D. In Sec.9.3 of the previous Part.IV, we showed that the best
direction to look for the Anderson localization phase transition in the intensity fluctuations
in the transmission direction but out of the forward lobe, and so, we shall compute the
intensity in the direction, for instance, θ = 75◦ or θ = π/6. Moreover, the statistics of the
intensity are realized over many realizations. For each realization, the positions (rj) and
the detuning (Wj) of all atoms are randomly generated, for a low-density configuration.
Thus, the statistics are realized on two variables that are the positions and the detunings
of the atoms. We saw in the previous Part.IV, by doing statistics on the positions, that
there is no localization at low density. Therefore, we do not expect that the statistics over
the position of the atoms will play a role in the results presented in this part.

In the first chapter Ch.12 we show how the diagonal disorder modifies the spectrum
of the coupling matrix. Ch.13 concerns the incoherent transmitted intensity; here we study
the influence of the diagonal disorder on the Ohm’s law and on the fluctuations of the
intensity. Finally, in Ch.14 we bring our attention to the radiated intensity decay dynamic,
and we compare the statistical analysis with the results presented in the paper.20
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12 SPECTRA ANALYSIS

Let us first look at how the diagonal disorder modifies the set of eigenvalues of
the coupling matrix D introduced in Sec.1.1 of Part.II. We plot in Fig.39 the spectrum
of the coupling matrix D for different values of the diagonal disorder W . We see that
increasing the diagonal disorder squeezes the decay rate range (γn) and widens the energy
shift range (ωn). In the paper,20 similar results were shown. The increase of the subradiant

Figure 39 – Eigenvalues of the coupling matrix computed for N = 2000 atoms uniformly
distributed in a cube of length L with a detuning of δ = 0 and a resonant
optical thickness of b0 = 10. 10 realizations on the distribution of the atoms
are performed.

Source: By the author

eigenvalues with the introduction of a diagonal disorder W modifies the behaviour of
the decaying intensity at longer times and more precisely, the subradiant rate that we
extensively discussed in Sec.3.3 (illustrated in Fig.16). The question is: is the increase
of the subradiant rate due to the new physics introduced by the diagonal disorder (like
localization), or is it simply an effect of the increasing subradiant eigenvalues’ decay rate?
This question is important because it has been recently mentioned88 that the localization
regime might change the long lifetime slope of the radiated intensity. At this stage, we
cannot answer this question as the subradiant rate has been shown to scale with the
resonant optical thickness18 which is not properly defined with the introduction of the
diagonal disorder which we discuss below.
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13 STATIONARY REGIME

13.1 Mean intensity

We now look at the mean scattered intensity. Experimentally and numerically
(using the radiative transfer equation) it has been shown60 that the transmission as a
function of the detuning follows a Lorentzian law in the single scattering regime (b(δ)� 1).
Close to resonance, the transmission as a function of the detuning has a saddle shape,
where the width depends on the resonant optical thickness b0. In Fig.40, we draw a 3D-map
of the transmitted intensity in the direction θ = 75◦ as a function of the detuning and the
diagonal disorder W for two values of the resonant optical thickness. First, we recover that
for a large b0 = 35, Fig.40a, we see a saddle shape, whereas it disappears at low b0 = 3.5,
Fig.40b. We observe that for a low diagonal disorder, W < 1, the usual saddle-Lorentzian
shape is not modified and the width of the saddle is constant as b0 is constant. However,
for a large diagonal disorder, W > 100, the transmission is independent of the detuning
and it decreases with W . In the regime, where W � |δ| the diagonal disorder W seems to
play the role of the detuning, and the transmitted intensity follows a function of W . For
instance, we could imagine an effective optical thickness: b(δ,W ) = b0/ (1 + 4(δ +W/2)2).
For a low diagonal disorder W � 1, and a low detuning δ � 1, the quantity δ +W/2 is
much lower than one. Thus, the effective optical thickness does not depend on those two
parameters (δ and W ) but only on b0. In another regime, where 4(δ +W/2)2 > 1, we can
distinguish two cases: when δ � W , the diagonal disorder is not strong enough to modify
the effective optical thickness, and whenW > δ the diagonal disorder dominate δ and plays
the role of the detuning. We apply this interpretation to Fig.40a: at resonance (δ = 0),
the saddle-Lorentzian shape breaks for W ≈ 3 > 0 (W 2 ≈ 9 > 1), which is consistent with
this simple interpretation. However, it remains a phenomenological interpretation.

When introducing a diagonal disorder, the two parameters, the detuning δ and the
optical thickness b(δ), are not well-defined as all atoms have a random effective detuning of
δ+Wi/2. Hence, we cannot use the optical thickness for physical interpretations. However,
we see in Fig.40 that the shape of the transmission as a function of the detuning stays the
same until a given diagonal disorder. It shows two regimes: the weak diagonal disorder
regime, where the mean transmission is constant at constant detuning, and the strong
diagonal disorder regime where the transmission scales with W . It is interesting to notice
that the transition between those two regimes seems, at a first order, independent of the
detuning and appears at Wc ≈ 1 for b0 = 35 and Wc ≈ 2 for b0 = 3.5. Even though the
two extreme regimes are understood, it would be interesting to characterize the transition
with δ and W . Indeed, it might help to extract a universal law of this transition which
could help understanding the physics involved at the transition. Moreover, this transition
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(a) N = 4800, k0L = 41.5, ρλ3 = 16.64 and 50
realizations.

(b) N = 800, k0L = 53.6, ρλ3 = 1.29, b0 = 3.5,
1000 realizations.

Figure 40 – Mean radiated intensity of the steady-state for a cloud of N atoms distributed
in a cube of side length k0L and with a density of ρλ3. The laser beam is
Gaussian of waistW0 = L/4. The intensity is computed in direction ro = 250L,
θ = 75◦.

Source: By the author

depends on b0 and W but not at a fixed W/b0 which is an important remark for what will
follow. The large W regime can be interpreted as a simple single scattering regime as all
atoms are far detuned from the laser frequency.

In the absence of diagonal disorder, the optical thickness b(δ) = b0/(1 + 4δ2) is
used to distinguished two regimes: the single scattering regime b � 1 and the multiple
scattering regime b � 1. In addition, the Beer-Lambert law that is defined for the
coherent transmission (θ = 0) says that in the stationary regime, I/Ilaser = exp(−b(δ)).
Unfortunately, those interpretations are not possible any more with the introduction of
the diagonal disorder as b(δ) is not clearly defined as we discussed above. We tried to
replace b(δ) in the Beer-Lambert law by the effective optical thickness b(δ,W ) defined
above but without full satisfaction. In order to get rid of the physical interpretation of
b(δ), we will use the coherent transmission Tc = I(θ = 0) as a measure of the single
and multiple scattering. We know that increasing the detuning decreases the multiple
scattering, and we expect the diagonal disorder to behave equally. To illustrate this, we
present in Fig.41 the incoherent (θ = π/6) scattered intensity as a function of the coherent
transmission, in the stationary regime, and tuning W and δ. Surprisingly, all the points fall
on one universal curve. It is a really useful result as it allows to distinguish the single and
multiple scattering regime without considering the optical thickness. At fixed detuning,
increasing the diagonal disorder always moves the points towards the right which is the
single scattering regime. It would be interesting to compare how fast the detuning and
the diagonal disorder bring the system in the single scattering regime. It would help to
distinguish the role of those two parameters. Indeed, the preliminary results show that the
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Figure 41 – Mean incoherent radiated intensity, in direction ro where ro = 250L, θ = π/6
and φ = 0, as a function of the coherent transmission. Atoms are uniformly
distributed in a cube of side length L. Intensity is computed over 100 realiza-
tions. We use a Gaussian laser beam of waist W0 = L/4. We use 9 values of
the diagonal disorderW ∈ [0, 100]. There are two sets of data: 1/ circles: fixed
size k0L = 60 and δ = 0, for each value of W the optical thickness is modified
by tuning b0 ∈ [0.3, 20]; 2/ squares: fixed number of atoms N = 4800 and
resonant optical thickness b0 = 35, for each value of W the optical thickness
is modified by tuning the detuning δ ∈ [0, 5].

Source: By the author

diagonal disorder plays a similar role to that of the detuning which cannot be totally true.

13.2 Intensity fluctuations

We bring our attention to the fluctuations of the radiated intensity in the steady-
state when tuning the diagonal disorder strength. As we showed in the previous Part.IV,
the variance is a good indicator for investigating a change of behaviour in the intensity
fluctuations. We show in Fig.42 the variance of the normalized intensity statistics for the
same parameters as in Fig.40b and with 1000 realizations. We see that the transition
between the two regimes discussed in Sec.13.1 does not impact the variance. According to
the results of Part.IV, we would like to affirm that the absence of a transition in Fig.42
means that there is no localization for this set of parameters. However, it is too strong
of a statement. We will simply say that the fluctuations of the intensity in the steady-
state do not allow for observing localization. Indeed, the stationary regime is dominated
by the superradiant modes that have been shown not to be localized modes.113 Also,
even if localized modes exist for some parameters of Fig.42, they are overwritten by the
superradiant modes. Hence, the localized modes do not modify significantly the intensity
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Figure 42 – Variance of the normalized radiated intensity as a function of the detuning
and the diagonal disorder for a cloud of N = 800 atoms distributed in a cube
of side length k0L = 41.5 and with a density of ρλ3 = 1.29. The laser beam is
Gaussian of waist W0 = L/4, b0 = 3.5. The intensity is computed in direction
ro = 250L, θ = 75◦ and for 1000 realizations.

Source: By the author

fluctuations in the steady-state which does not allow for observation of the localization’s
transition in the variance. Thus, we want to focus our attention on the long lifetime modes
that are more likely to be localized. There exist three kinds of long lifetime modes: the
radiation trapping modes, the subradiant modes and the localized modes. We can easily
get rid of the radiation trapping by applying a strong detuning or a large diagonal disorder
as illustrated in Fig.41. However, it is not trivial to distinguish the subradiant modes from
the localized modes. In order to select the long lifetime modes, we bring our attention,
in the next Ch.14, to the decaying intensity at a long time. Indeed, at a long time, it
would remain only the subradiant, radiation trapping and localized modes, whereas the
superradiant modes would have already decayed.

Moreover, we have observed that for a very large diagonal disorder, the variance
always increases above one as illustrated in Fig.43. We first thought that it might be a
single scattering regime effect as Fig.43a suggests. However, we know that it is not as we
showed in the previous Part.IV that, without diagonal disorder and at large detuning, the
variance stays equal to one. Hence, this effect is because of the introduction of a diagonal
disorder. We now want to understand this effect and why a large diagonal disorder makes
the variance of the normalized intensity increase above one.

In order to answer this question let us take the simple example of one atom at
position r = 0 with δ+Wa the detuning of the atom where Wa is the detuning fluctuation
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(a) (b)

Figure 43 – Variance of the normalized radiated intensity as a function of the diagonal
disorder for a cloud of N atoms distributed in a cube of side length L and with
a fixed density of ρλ3 = 5. The laser beam is Gaussian of waist W0 = L/4.
The intensity is computed in direction ro = 250L, θ = 75◦, φ = 0 and 1000
realizations where used.

Source: By the author

that is randomly chosen in [−W/2, +W/2] and where W is the strength of the diagonal
disorder. The coupled-dipole model is then described by a simple differential equation:

dβ(t)
dt

=
(
ı (δ +WaΓ)− Γ

2

)
β(t)− ı

2E0, (13.1)

where we note E0 = Elaser(0), the laser field at position r = 0. In the stationary regime,
the dipole is:

βstat =
ı
2E0

ı (δ +WaΓ)− Γ
2
. (13.2)

In order to simplify the problem, we use δ = 0, and we normalise by all the constants so,
the radiated intensity, in a given direction, is proportional to:

Istat ∝ 1
1 + 4W 2

a

. (13.3)

The goal of these calculations is to compute the variance of the variable Istat when the
statistics are done over Wa. We know that the random variable Wa is uniformly distributed
in [−W/2, +W/2] and the probability distribution function (PDF) of the variable Wa is
fW (Wa) = 1/W . We define a new dimensionless random variable Is = ψ(Wa) = 1/(1+4W 2

a )
that is defined in Is ∈ [1/(1 +W 2), 1] where ψ and ψ−1 are differentiable. We introduce
this new random variable in order to model the radiated intensity of one atom given in
(13.3). The theory of probability says that the PDF of the variable Is that we note fIs(Is)
can be expressed as follows,

fIs(Is) = 1
ψ′(ψ−1(Is))

fW (ψ−1(Is)), (13.4)
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which leads to the expression:

fIs(Is) = 1
2WI

3/2
s (1− Is)1/2

. (13.5)

We have used this expression to compute the first and second momentum of the random
variable I:

E(Is) =
∫ 1

1/(1+W 2)
IsfIs(Is) dIs =

∫ 1

1/(1+W 2)
Is

1
2WI

3/2
s (1− Is)1/2

dIs (13.6)

= ı (log(1 +W 2)− 2 log(1 + ıW ))
2W , (13.7)

and

E(I2
s ) =

∫ 1

1/(1+W 2)
I2
s fIs(Is) dIs =

∫ 1

1/(1+W 2)
I2
s

1
2WI

3/2
s (1− Is)1/2

dIs =
W

1+W 2 + arctan(W )
2W .

(13.8)
We discuss the behaviour of the variance in the two extreme regimes ofW = 0 andW →∞.
In the limit of no diagonal disorder, i.e. W → 0, we have E(Is) → 1 and E(I2

s ) → 1 so,
var(Is)/〈Is〉2 = σ2

Ĩs
= E(I2)/E2(I) − 1 → 0 (we remind that var(Is) = E(I2

s ) − E(Is)2

and the normalized intensity is Ĩs = Is/〈Is〉). We recover the fact that when there is
no diagonal disorder W = 0 (for a given configuration of atoms positions), there is no
randomness in the computation of the intensity, so the random variable Is is constant and
its variance is zero.
Finally, the variance of the variable Is is:

E(I2
s )

E(Is)2 − 1 =
W

1+W 2 + arctan(W )
(log(1 +W 2)− 2 log(1 + ıW ))2 /(2W )

− 1. (13.9)

In the limit of a strong diagonal disorder, W →∞, the numerator of the fraction in (13.9)
is finite and is equal to 0 + π/2 whereas the denominator goes to zero. Finally, in the
strong diagonal disorder limit, the variance divided by the square of the mean goes to
infinity. In Fig.44, we plot the equation (13.9).

In the analytical calculations done above, we studied the radiated intensity of
one fixed atom where the detuning of this atom is randomly chosen in the range of
[−W/2, +W/2]. We performed a statistical analysis of the scattered intensity from one
fixed atom where the detuning is the only random variable. These analytical calculations,
summarized in Fig.44, show that the variance of the normalized scattered intensity of one
atom is zero in the absence of randomness W = 0 and increases to infinity with increasing
W . The interest of looking at the behaviour of one atom is to understand the behaviour of
a system with N independent atoms. Indeed, when the diagonal disorder is too strong, all
atoms are decoupled and the radiated intensity of N atoms can be model by N times the
radiation of one atom. Hence, the increase of the quantity σ2

Ĩ
, that we observe in Fig.43, for

a really large diagonal disorder, can be explained as a consequence of a single atom regime.
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W

Single atoms

Figure 44 – Variance of the normalized intensity radiated by one atom as a function of
the diagonal disorder. Equation (13.9).

Source: By the author

This single atom regime has to be carefully distinguished from the localized regime that
we discussed in Part.IV. Indeed, we now know that in both regimes, the localized regime
and the single atom regime, the variance of the intensity statistics in the steady-states
diverges from one.





129

14 TEMPORAL BEHAVIOUR

In the previous Ch.12, we have explored the statistics of the radiated intensity in
the stationary regime through, for instance, the variance. We here bring our attention to
the dynamical regime, i.e. we study the statistics of the radiated intensity after the laser
had been on for δt = 50Γ−1, in the dilute regime and when increasing the diagonal disorder.
The interest of looking at the radiated intensity at a long time is that the superradiant
modes have already decayed and only the long lifetime modes remain (radiation trapping,
subradiant and localized modes). Indeed, the superradiant modes have been shown not to
be localized whereas the localized modes have a long lifetime. It is, however, important
to distinguish the physics of the three long lifetime modes. The radiation trapping is
perfectly described by a random walk model so we do not expect the radiation trapping
modes to modify the fluctuations of the intensity. Moreover, the results presented in this
chapter have been recovered by introducing a large detuning where there are no radiation
trapping modes. Hence, we focus our interpretations on the subradiant and localized modes.
Moreover, we stay in the dilute regime ρλ3 � 22, where we ensure that, in the absence of
diagonal disorder, we are in the non-localized regime which we learned from the previous
Part.IV.

We will compare the results of this part with the results of a recent publication.20

Indeed, in this paper, Anderson localization of light in 3D is investigated at low density
by introducing a diagonal disorder. The average participation ratio (PR) of a well-selected
set of subradiant and superradiant eigenvalues is studied and was used to show that, for
the subradiant modes, a transition in the PR appears. They link this transition to an
Anderson localization phase transition. There are two results of this paper that we will
discuss in this chapter. First, we see in Fig.45, extracted from,20 that the average PR of
a set of subradiant eigenvalues contains a transition that scales with the strength of the
diagonal disorder divided with the resonant optical thickness and for a value ofW/b0 ≈ 0.2.
In order to recover these results, we will discuss in Sec.14.2 the variance of the radiated
intensity in the subradiant regime. Moreover, we see in Fig.45, that there is no phase
transition for the PR of the superradiant eigenvalues which is consistent with the fact that
in Sec.13.2 we did not observe any transition because the stationary regime is dominated
by superradiant modes.

The second result of this paper, that we recover in Sec.14.3, is the linear scaling of the
normalised diagonal disorderW/b0 with the critical decay rate Γcr:Wc/b0 ≈ 1.61Γcr+0.053.
It is illustrated in Fig.46.

In this chapter, we perform a statistical study of I(t) that is the far-field intensity
(presented in Sec.3.1) after the laser has been on for 50Γ−1 seconds. We remark that I(0)
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Figure 45 – Study of the average participation ratio of a set of sub- and superradiant
eigenvalues.

Source: Adapted from CELARDO et al.20

Figure 46 – Diagonal disorder divided by the resonant optical thickness as a function of
a transition’s decay rate. The Eq.(4) mentioned in the caption is Wcr/b0 ∼
1.61Γcr + 0.053

Source: Adapted from CELARDO et al.20



14.1 Variance in time without diagonal disorder 131

essentially corresponds to the stationary regime. The intensity is computed for a large
number of realizations where, for each realization, we generate a random position and a
random detuning δ+Wa for each atom, withWa ∈ [−W/2, +W/2], andW is the strength of
the diagonal disorder. Then, we compute the variance in time var(Ĩ(t)) = 〈

(
Ĩ(t)− 〈Ĩ(t)〉

)2
〉

where Ĩ(t) = I(t)/〈I(t)〉.

14.1 Variance in time without diagonal disorder

First, we examine the variance of the radiated intensity in time without including
a diagonal disorder and in the dilute regime, where no localization is expected. In Fig.47
we plot var(Ĩ(t)) at fixed b0 = 10, for different number of atoms N but staying in the
non-localized regime. Surprisingly, we observe that the variance diverges from one at
a long times. The divergence starts at a longer time as the number of atom increases.
According to Part.IV, we expected the variance to stay equal to one in the absence of
localization. One interpretation might be the low statistics of the subradiant eigenvalues
due to a low number of atoms. At a fixed time t, we consider that all the modes with
the decay rate Γγnt > 3 have discharged. Indeed, the mode n exponentially decays with
the form ψn(t) = ψ0

n exp
(
−Γ

2λnt
)
, so we know that at the time t = 3/(Γγn), 95% of the

mode n would have decayed. Thus, at a long time, only few modes will remain populated,
until only the most subradiant (min(<(λn))) stays populated. Hence, the statistics of the
intensity a long time are strongly impacted by the number of modes that remain populated.
If only few modes remain populated at time t for every realization, the statistics will not
be good. In order to increase the statistics, and therefore, the number of modes populated,
we can either increase the number of atoms or we compute the variance of the intensity
at a shorter time. Indeed, increasing the number of atoms will increase the number of
modes that satisfy the condition Γγnt > 3 and thus, it will increase the probability to have
excited modes at time t. We observe in Fig.47 that increasing the number of atoms put
further the time of divergence of the variance of the intensity. However, in our simulations,
we are limited by the number of atoms that we can use due to computational time. Hence,
we will perform our statistical analysis of the radiated intensity at short time, between
10Γ−1 and 30Γ−1, but at a sufficiently long time to be sure that the superradiant modes
have already decayed.

We conclude that the increase of var(Ĩ(t)) at long time is a subradiant eigenvalues
statistics effect and should disappear for a very large number of atoms. Unfortunately, we
saw in Ch.12 that introducing a diagonal disorder increases the decay rate of the subradiant
eigenvalues. Ergo, we have to make sure that the increase in the variance of the intensity
at a long time is not due to subradiant eigenvalues statistics but a real localization effect.
It is not easy to deal with this contradiction.
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Figure 47 – Variance of the normalized radiated intensity in time. Atoms are distributed
in a cylinder of side length L and radius L/2, we use a Gaussian laser of waist
W0 = L/4 and detuning δ = 0. The resonant optical thickness is b0 = 10,
and the density is ρλ3 = 4. The intensity is computed in direction ro = 250L,
φ = 0 and θ = π/5. There is no diagonal disorder W = 0.

Source: By the author

14.2 Intensity fluctuations

We use a similar geometry, a uniform cube distribution, and the same parameters,
as in Fig.45 and we show in Fig.48, the variance of the normalized radiated intensity
at time t = 30Γ−1 as a function of W/b0. It is a really interesting result as it exhibits a
transition between a weak diagonal disorder regime W/b0 � 0.2 and a strong diagonal
disorder regime, W/b0 � 0.2. Moreover, the value of W/b0 ≈ 0.2, where this transition
appears, is comparable with the one in Fig.45. Hence, we observe a similar transition into
the variance of the radiated intensity as the one observed in the PR in.20

14.3 Scaling of the critical diagonal disorder

In the previous section we showed a transition, at a critical diagonal disorder
W/b0 ≈ 0.2, in the variance of the radiated intensity computed at time t = 30Γ−1; see
in Fig.48. In this section, we generalize this study for different times. We plot, in Fig.49,
the critical diagonal disorder at the transition as a function of the inverse time when the
radiated intensity statistics are performed. The critical diagonal disorder at the transition
is computed as follows: we use the same parameters as for every point of Fig.48 and, we
plot var(Ĩ(t)) and we record the time t where the curve var(Ĩ(t)) crosses 1.5. We exclude
in Fig.49 the extreme values. Another procedure would have consisted in extracting the



14.3 Scaling of the critical diagonal disorder 133

Figure 48 – Variance of the normalized radiated intensity at time t = 30Γ−1 as a function
of the diagonal disorder divided by resonant optical thickness. Atoms are
uniformly distributed in a cube of side length L. Intensity is computed over
50 realizations in direction ro where ro = 250L, θ = 75◦ and φ = 0. We use a
Gaussian laser of waist W0 = L/4 and detuning δ = 0.

Source: By the author

critical diagonal disorder from Fig.48 where the variance diverges from one and so forth at
different times.

The critical decay rate Γcr in Fig.46 distinguishes between the non-localized mode
(γn > Γcr) and the localized modes (γn < Γcr). Similarly, computing the radiated intensity
at time t allows selecting the eigenmodes n with a decay rate γn that satisfies Γγnt < 3,
whereas the modes with a decay rate Γγnt > 3 have already decayed, as we have discussed
previously. It is another way to select the modes according to their decay rate. Hence, we
can draw a parallel between the normalized decay rate Γcr in Fig.46 and the normalized
inverse time 1/(tΓ) where the radiated intensity statistics analysis is performed. We see
in Fig.49 that the linear scaling of W/b0 with 1/(tΓ) is recovered. However, the slopes of
the linear scalings are different. This difference might be due to the procedure we have
used to extract the critical diagonal disorder. The linear scaling of Fig.49 is the second
confirmation that the transition observed in Fig.48 is consistent with the results of.20
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Figure 49 – The system is the same as in Fig.48. t is the time when var(Ĩ(t)) crosses 1.5.

Source: By the author
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15 CONCLUSION

In this part, we have used the diagonal disorder as a way to reach a localized regime.
We studied the variance of the radiated intensity in time in order to exhibit a transition
between a low diagonal disorder to a strong diagonal disorder regime. Indeed, we have
shown that the intensity fluctuations exhibit a phase transition. This transition has been
observed in the variance of the long lifetime decay of the intensity where only long lifetime
modes remain. We showed that this transition depends on the quantity W/b0. We also
showed that the diagonal disorder at the transition linearly scales with the inverse time
when the intensity statistics are performed. It means that there is a linear dependence
between the diagonal disorder needed to reach the localized regime and the decay rate of
the localized modes. Those two results are consistent with a recent publication.20 Let us
put together the three following results: first, we showed in the Part.IV, that the intensity
statistics exhibit an AL phase transition, second, we showed in Part.V a phase transition
in the variance of the intensity statistics by increasing the diagonal disorder, and finally,
the results of Part.V match with the publication.20 They are strong arguments in favour
of the diagonal disorder as a way to observe Anderson localization. Finally, unlike the PR,
the intensity fluctuations is an observable that can be experimentally measured.

The diagonal disorder as a way to reach the localized regime has many advantages.
The localized regime can be reached without high densities and the diagonal disorder
can be introduced by an external speckle field which gives a good control of the strength
of the diagonal disorder. However, there are still open questions like the impact of the
temperature on the stability of localized modes, the influence of the cloud geometry (we
have used a cube), and the distribution of the diagonal disorder (we have considered only
a uniform distribution whereas a speckle pattern is Gaussian).





Part VI

General conclusion
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This thesis investigated the light-matter interaction in the context of the coupling
between a laser and a cloud of two-level cold atoms. In the first part, we addressed the
question of the role of the disorder for super- and subradiance.40 We developed a model
that does not contain disorder, based on a mean-field approach, that we compared with
the coupled-dipole microscopic model. We showed that the two models contain super-
and subradiant modes. In particular, the superradiant decay rate scales with the resonant
optical thickness and cooperative effects still exist at large detuning for the two models.18,35

It shows that subradiance does not require disorder. We also confirmed, with the mean-field
model, that the subradiance is related to modes with inhomogeneous phase profile modes
whereas the superradiant modes present a relatively homogeneous phase profile.38

In the second part of this thesis, we have used the mean-field model to perform a
scaling analysis. As expected, we showed that this model does not exhibit a localization
transition as it does not include disorder. The presence of subradiance but the absence
of localization in the mean-field approach show that subradiance in not automatically
associated to localization. It is an important result in the search of Anderson localization
of light. Indeed, in the first experiments on localization, the time decay of the intensity
was measured and a deviation was observed from the usual diffusion theory, which was
interpreted as a localization effect. Moreover, a recent theoretical work88 made a link
between light trapping and the long lifetime decaying slope of the intensity, which can be
understood as a subradiance effect rather than a localization one. Hence, the knowledge we
now have on subradiant and the fact that it has been recently experimentally observed18

give a better understanding of the connection between localization and long lifetime modes.

Most recent theoretical work on Anderson localization of light in 3D is based on
increasing the density, to increase disorder.34,40,47,48,66 Even though theoretical works have
shown that the Anderson localization phase transition depends on the detuning and the
density, they have not exhibited an experimental observable that might be used to observe
this transition. In the third part of this thesis, we first showed that the mean transmitted
intensity is not a good observable to detect localization, yet the fluctuations of the intensity
are. We indeed showed that the variance of the intensity presents a transition as the density
and the detuning are tuned. We validated that this transition is an AL phase transition
by showing that it has the same characteristics as the AL phase transition presented in
the recent literature. The transition is present in the variance for a scalar description
of the light but not when the vectorial behaviour of light is considered. Yet, applying a
strong magnetic field restores the observation of the transition, as expected.87 Moreover,
we extracted a conductance and recovered the scaling law of the conductance with the
variance. We showed that the conductance increases to the infinity in the non-localized
regime whereas it decreases to zero in the localized regime. Finally, we showed that the
intensity statistics and the computation of the variance can be experimentally obtained by
a measurement of the autocorrelation function.
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Those are important results for the localization of light community, especially for
experimentalist since it provides an observable that exhibits localization. However, many
limitations remain on an experimental point of view. The localized regime is reached
for high densities what introduces experimental complications: the system is sensitive to
the temperature (which is not considered in our study), the small size of the cloud is
difficult to stabilize and the focus of the laser beam inside the medium needs a low power
(in particular to avoid nonlinear effects), which generates few scattered photons. From
a numerical point of view, the introduction of the temperature in the model makes the
simulations much more challenging.

In the final part of this thesis, we have presented another method to reach the
localized regime: introducing a diagonal disorder. First, we showed that the diagonal
disorder modifies the set of eigenvalues of the coupling matrix by squeezing their decay
rate. Like in the previous part, we studied the variance of the radiated intensity statistics
in the dilute regime, to search for a transition at large diagonal disorder. The statistics
are performed over the atom’s positions (off-diagonal disorder) and transition frequency
(diagonal disorder). First, we looked at the stationary regime and we did not observe any
transition as the steady-state regime is dominated by superradiant modes that are not
expected to be localized. Then, we computed the variance of the radiated intensity in time
after the cloud been charged for a long time. It allowed us to select the long lifetime modes
that are more likely to be localized. We showed a transition in the variance that scales
with the diagonal disorder divided by the resonant optical thickness and we found that
the diagonal disorder at the transition linearly scales with the inverse time of computation
of the intensity. Those results are in agreement with a recent publication.20

This work on the diagonal disorder is promising in the search of AL of light. Indeed,
experimentally, the diagonal disorder is easier than the density method to implement.
The main strong advantage is that we do not need to have high densities to reach the
localized regime. Moreover, the diagonal disorder can be well controlled by applying a
speckle field, the temperature has a weaker impact than at high densities and we can work
with a larger cloud of atoms. There are still several issues to address such as the geometry
of the cloud (we have used a cube) and the distribution of the diagonal disorder, we have
used a uniform distribution whereas the speckle is Gaussian.
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